• 제목/요약/키워드: Intelligent video surveillance

검색결과 126건 처리시간 0.023초

다중 분류기의 판정단계 융합에 의한 얼굴인식 (Multi-classifier Decision-level Fusion for Face Recognition)

  • 염석원
    • 대한전자공학회논문지SP
    • /
    • 제49권4호
    • /
    • pp.77-84
    • /
    • 2012
  • 얼굴인식 기술은 지능형 보안, 웹에서 콘텐츠 검색, 지능로봇의 시각부분, 머신인터페이스 등, 활용이 광범위 하다. 그러나 일반적으로 대상자의 표정과 포즈 변화, 주변의 조명 환경과 같은 문제가 있으며 이와 더불어 원거리에서 획득한 영상의 경우 저해상도를 비롯하여 블러와 잡음에 의한 영상의 열화 등의 여러 가지 어려움이 발생한다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법(Linear Discriminant Analysis)을 이용한 다중 분류기(Classifier)에 의한 판정을 융합하여 얼굴 영상 인식을 수행한다. Fisher 선형판별법은 집단 간 분산을 최대로 하고 집단 내 분산을 최소로 하는 공간으로 선형 투영하는 방법으로, 학습영상의 수가 적을 경우 특이행렬 문제가 발생하지만 포톤카운팅 선형 판별법은 이러한 문제가 없으므로 차원축소를 위한 전 처리 과정이 필요 없다. 본 논문의 다중 분류기는 포톤 카운팅 선형판별법의 유클리드 거리(Euclidean Distance) 또는 정규화된 상관(Normalized Correlation)을 적용하는 판정규칙에 따라 구성된다. 다중분류기의 판정의 융합은 각 분류기 cost의 정규화(Normalization), 유효화(Validation), 그리고 융합규칙(Fusion Rule)으로 구성된다. 각 분류기에서 도출된 cost는 같은 범위로 정규화된 후 유효화 과정에서 선별되고 Minimum, 또는 Average, 또는 Majority-voting의 융합규칙에 의하여 융합된다. 실험에서는 원거리에서 획득한 효과를 구현하기 위하여 고해상도 데이터베이스 영상을 인위적으로 Unfocusing과 Motion 블러를 이용하여 열화하여 테스트하였다. 실험 결과는 다중분류기 융합결과의 인식률은 단일분류기보다 높다는 것을 보여준다.

주변 전경 픽셀 전파 알고리즘 기반 실시간 이동 객체 검출 (A Real-time Motion Object Detection based on Neighbor Foreground Pixel Propagation Algorithm)

  • 응웬탄빈;정선태
    • 대한전자공학회논문지SP
    • /
    • 제47권1호
    • /
    • pp.9-16
    • /
    • 2010
  • 이동 객체 검출은 입력 영상에서 배경과 다른 전경 객체를 찾는 것을 말하는 것으로 지능 영상 감시, HCI, 객체 기반 영상 압축 등의 여러 영상 처리 응용 분야에서 필요한 과정이다. 기존의 이동 객체 검출 알고리즘은 상당한 계산량을 요구하여 다채널 영상 감시 응용, 또는 임베디드 시스템에서의 단일 채널의 실시간 응용에 사용하는 데 애로가 많다. 보다 정확한 이동 객체 검출을 위하여 필요한 과정인 전경 마스크 정정은 보통 열림, 닫힘 등의 모폴로지 연산을 통해 수행된다. 모폴로지 연산은 계산량이 적지 않고 게다가 프로세싱 방법이 달라 이동 객체 검출의 다음 단계인 연결 요소 레이블링 루틴과 동시에 처리되기 어렵다. 본 논문에서는 먼저 모폴로지 연산과는 달리 연결 요소 레이블링 루틴에서 사용되는 주변 픽셀 점검 과정을 활용한 전경 마스크 정정 알고리즘인 "주변 전경 픽셀 전파"을 고안하고, 이를 활용하여 전경 마스크 정정과 연결 요소 레이블링이 동시에 수행될 수 있는 이동 객체 검출 방법을 제안한다. 실험을 통해, 제안된 이동 객체 검출 방법이 기존의 모폴로지 연산을 사용한 방법 보다 정확하게 이동 객체를 검출하였으며, 대상 실험 영상 프레임 및 비디오에 대해서는 최소 4배 이상 신속하게 처리됨을 확인하였다.

국회 외곽 경호·경비시스템 발전방향에 관한 연구 (Improving the Protection and Security System Outside the National Assembly Building)

  • 최오호
    • 시큐리티연구
    • /
    • 제60호
    • /
    • pp.113-135
    • /
    • 2019
  • 대한민국 국회는 "가"급 국가중요시설임에도 불구하고 테러 발생에 대한 가능성과 국회 청사내 집회 및 시위와 금지물품 반입은 점점 증가하고 있으며, 열린국회를 지향함으로써 많은 출입문 개방과 다수의 이용자로 인해 출입통제에 있어 취약점이 많다고 할 수 있다. 또한, 국회를 공격함으로써 얻게 되는 상징적인 효과는 매우 높지만 보안관리 수준은 상대적으로 매우 낮아 테러 공격의 대상이 될 가능성이 매우 높다. 이러한 보안상의 취약점을 해결하기 위해서는 제3선인 외곽에서부터의 적절한 출입통제시스템을 운용해야 한다. 하지만 외곽에서 적절한 출입통제가 이루어지지 않고 있으며, 외곽 경비를 담당하고 있는 국회경비대는 2023년 의무경찰 폐지에 따라 2020년 6월에 철수할 예정이므로 이에 따른 외곽 경비 대체 방안과 더불어 외곽 경호·경호경비시스템을 강화할 수 있는 방안을 조속히 마련할 필요가 있다. 이에 따라 본 연구에서는 국회사무처 보안 분야 담당 공무원 114명을 대상으로 외곽 경호·경비시스템에 대한 인식조사를 실시하였다. 연구 결과 국회 외곽에서 위협상황이 발생할 가능성이 높다고 인식하고 있으며, 지능형 영상감지 시스템 및 침입탐지시스템과 드론 등 4차 산업혁명 기술 도입에 긍정적으로 인식하고 있다. 또한, 3선 경호 체계를 중장기적으로 일원화하고 전담부서를 설치하는 방안에 대해 긍정적으로 인식하고 있으며, 국회경비대 대체 방안으로는 청원경찰이 가장 높은 응답률을 보였고, 중장기적으로 의회경찰을 도입하는 것에 긍정적으로 인식하고 있다.

Fuzzy C-means와 CONDENSATION을 이용한 객체 검출 및 추적 시스템 (An Object Detection and Tracking System using Fuzzy C-means and CONDENSATION)

  • 김종호;김상균;황구선;안상호;강병두
    • 한국산업정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.87-98
    • /
    • 2011
  • 동영상에서의 움직이는 객체 검출과 추적은 객체 식별, 상황인식, 지능형 영상 감시 시스템 등 많은 시각 기반 응용 시스템에서 기본적이고 필수적인 전처리 작업이다. 본 논문에서는 배경과 조명이 실시간으로 변화하는 상황에서 움직이는 객체를 빠르고 정확하게 추출하고 움직이는 객체가 다른 물체에 가려지는 경우에도 강인하게 객체를 추적하는 방법을 제안한다. 객체의 효과적인 검출을 위해서 효과적인 고유 공간과 Fuzzy C-means(FCM) 를 결합하여 사용하고 검출된 객체를 강인하게 추적하기 위해 Conditional Density Propagation (CONDENSATION) 알고리즘을 사용한다. 먼저 Principal Component Analysis(PCA)를 이용하여 배경 영상에서 수집한 학습데이터를 주성분(Principal component)으로 선형변환 한다. 주성분들의 고유 특성에 대한 해석을 통하여 객체와 배경에 대하여 판별 능력이 우수한 주성분을 선별하여 고유 배경을 구성한다. 다음으로 이전단계에서 구성된 고유 벡터와 입력 영상을 결합한 연산 결과를 FCM의 입력 값으로 사용해서 객체를 검출한다. 최종적으로 검출된 객체의 좌표를 CONDENSATION의 입력으로 사용해서 객체를 추적한다. 고정된 카메라에서 조명변화와 배경변화에 적용 가능한 시스템을 구현하기 위해 고정된 카메라에서 움직이는 다양한 객체가 포함된 영상을 수집하여 학습데이터로 구성하여 사용하였다. 실험 결과에 따르면 제안하는 방법이 조명변화와 배경변화 그리고 객체의 부분적 움직임에 모두 강인하게 객체를 검출하고 다른 물체나 배경에 의해 객체가 일부 가려지더라도 객체를 추적함을 보여준다.

다중 이동 객체의 실시간 인식 및 추적 시스템 (Real-time Recognition and Tracking System of Multiple Moving Objects)

  • 박호식;배철수
    • 한국통신학회논문지
    • /
    • 제36권7C호
    • /
    • pp.421-427
    • /
    • 2011
  • 실시간 객체 인식 및 추적은 컴퓨터 비전 응용 산업이 발달하면서 그 중요성이 더해지고 있다. 객체 추적을 위해 많이 이용되고 있는 알고리즘으로 Mean-Shift 알고리즘이 있다. Mean-Shift 알고리즘을 기반으로 한 객체 추적 알고리즘은 구현이 간단하고, 적은 계산 복잡도를 갖는 장점이 있다. 따라서 실시간 객체 추적 시스템에 적합하다고 할 수 있지만, 지역 모드로의 수렴만을 보장하는 특성으로 인해 객체의 수가 많은 경우 좋은 성능을 나타내지 못하는 단점을 가지고 있다. 그러므로 본 논문에서는 다중 이동 객체를 실시간으로 추적하기 위한 광류기반의 움직임 추정 기법을 제안한다. 제안된 알고리즘의 성능을 확인하기 위해 다중 이동 객체의 인식 실험 결과 유사도는 0.96으로 기존의 Mean-Shift 알고리즘에 비해 약 13.4% 정도 유사도가 개선되었고 평균 픽셀 오류도 3.07로 또한 50% 이상 감소하였다. 향후 알고리즘을 개선하여 처리 속도를 더욱 줄임으로써 매우 빠른 이동 객체 인식과 상황 인지 알고리즘을 추가한다면 보다 효율적인 인식 및 추적 시스템을 구축할 수 있을 것으로 사료된다.

YOLOv2 기반의 영상워핑을 이용한 강인한 오토바이 번호판 검출 및 인식 (Robust Motorbike License Plate Detection and Recognition using Image Warping based on YOLOv2)

  • 당순정;김응태
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.713-725
    • /
    • 2019
  • 번호판 자동인식(ALPR: Automatic License Plate Recognition)은 지능형 교통시스템 및 비디오 감시 시스템 등 많은 응용 분야에서 필요한 기술이다. 대부분의 연구는 자동차를 대상으로 번호판 감지 및 인식을 연구하였고, 오토바이를 대상으로 번호판 감지 및 인식은 매우 적은 편이다. 자동차의 경우 번호판이 차량의 전방 또는 후방 중앙에 위치하며 번호판의 뒷배경은 주로 단색으로 덜 복잡한 편이다. 그러나 오토바이의 경우 킥 스탠드를 이용하여 세우기 때문에 주차할 때 오토바이는 다양한 각도로 기울어져 있으므로 번호판의 글자 및 숫자 인식하는 과정이 훨씬 더 복잡하다. 본 논문에서는 다양한 각도로 주차된 오토바이 데이터세트에 대하여 번호판의 문자 인식 정확도를 높이기 위하여 2-스테이지 YOLOv2 알고리즘을 사용하여 오토바이 영역을 선 검출 후 번호판 영역을 검지한다. 인식률을 높이기 위해 앵커박스의 사이즈와 개수를 오토바이 특성에 맞추어 조절하였다. 그 후 기울어진 번호판을 검출한 후 영상 워핑 알고리즘을 적용하였다. 모의실험 결과, 기존 방식의 인식률이 47.74%에 비해 제안된 방식은 80.23%의 번호판의 인식률을 얻었다. 제안된 방법은 전체적으로 오토바이 번호판 특성에 맞는 앵커박스와 이미지 워핑을 통해서 다양한 기울기의 오토바이 번호판 문자 인식을 높일 수 있었다.