• Title/Summary/Keyword: Intelligent transportation

Search Result 1,055, Processing Time 0.024 seconds

Considerations on a Transportation Simulation Design Responding to Future Driving (미래 교통환경 변화에 대응하는 교통 모의실험 모형 설계 방향)

  • Kim, Hyoungsoo;Park, Bumjin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.60-68
    • /
    • 2015
  • Recent proliferation of advanced technologies such as wireless communication, mobile, sensor technology and so on has caused significant changes in a traffic environment. Human beings, in particular drivers, as well as roads and vehicles were advanced on information, intelligence and automation thanks to those advanced technologies; Intelligent Transport Systems (ITS) and autonomous vehicles are the results of changes in a traffic environment. This study proposed considerations when designing a simulation model for future transportation environments, which are difficult to predict the change by means of advanced technologies. First of all, approximability, flexibility and scalability were defined as a macroscopic concept for a simulation model design. For actual similarity, calibration is one of the most important steps in simulation, and Physical layer and MAC layer should be considered for the implementation of the communication characteristics. Interface, such as API, for inserting the additional models of future traffic environments should be considered. A flexible design based on compatibility is more important rather than a massive structure with inherent many functions. Distributed computing with optimized H/W and S/W together is required for experimental scale. The results of this study are expected to be used to the design of future traffic simulation.

Methodology for Processing GPS-based Bicycle Speed Data for Monitoring Bicycle Traffic (자전거 모니터링을 위한 자료처리 프로세스 개발 및 응용 - GPS기반 자전거 속도자료를 중심으로)

  • Rim, Heesub;Joo, Shinhye;Oh, Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.10-24
    • /
    • 2014
  • Bicycle is a useful transportation mode that is healthy, emission-free, and environmentally compatible. Although large efforts have been made to promote the use of bicycling to date, there still exist various hurdles and limitations. One of the key issues to increase bicycling is how to gather bicycle-related data from the field and to generate valuable information for both users and operations agencies. This study proposes a method to process bicycle trajectory data which is obtained from tracing global positioning systems(GPS) equipped bicycle, which is defined as the probe bicycle. The proposed method is based on the concept of statistical quality control of data. In addition, a data collection and processing scenario in support of public bicycle system is presented. The outcomes of this study would be valuable fundamentals for developing bicycle traffic information systems that is a part of future intelligent transportation systems(ITS).

Development of a Mid-/Long-term Prediction Algorithm for Traffic Speed Under Foggy Weather Conditions (안개시 도시고속도로 통행속도 중장기 예측 알고리즘 개발)

  • JEONG, Eunbi;OH, Cheol;KIM, Youngho
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.256-267
    • /
    • 2015
  • The intelligent transportation systems allow us to have valuable opportunities for collecting wide-area coverage traffic data. The significant efforts have been made in many countries to provide the reliable traffic conditions information such as travel time. This study analyzes the impacts of the fog weather conditions on the traffic stream. Also, a strategy for predicting the long-term traffic speeds is developed under foggy weather conditions. The results show that the average of speed reductions are 2.92kph and 5.36kph under the slight and heavy fog respectively. The best prediction performance is achieved when the previous 45 pattern cases data is used, and the 14.11% of mean absolute percentage error(MAPE) is obtained. The outcomes of this study support the development of more reliable traffic information for providing advanced traffic information service.

Optimization of TIME-OF-DAY and Estimation on the Field Application for Arterial Road (간선도로 교차로의 TOD 시간계획 최적화 및 현장적용 평가)

  • Lee, In-Gyu;Lee, Ho-Sang;Kim, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.113-123
    • /
    • 2011
  • Traffic signal control is one of the most cost-effective means of improving urban mobility. With the recent progress of ITS (Intelligent Transportation System) and the installation of the real time traffic control systems, traffic signal control is conducted in online and real time. Normally, time-of-day (TOD) signal control is used with the system, but no definite methodology has yet been available for efficient TOD signal planing designing. Such method and process are in need to optimize the traffic signal timing plan. This paper proposes the optimization of TOD signal timings on arterials. The effects of the signal timings from the proposed method were assessed in the field. The proposed includes the methods determining the separation of the TOD break points and the TOD intervals. Those were tested on an arterial consisting of ten coordinated signalized intersections. It was found from the test results that the proposed TOD signal timing plans outperformed the previous signal timings.

Analysis on Video Image Detection System Performance by Vehicle Speed (차량 속도별 영상검지기 성능분석)

  • Jang, Jin-Hwan;Park, Chang-Soo;Baik, Nam-Cheol;Lee, Mee-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.105-112
    • /
    • 2005
  • This paper not only tests VIDS(Video Image Detection System) performance by vehicle speed group but also suggests optimal VIDS height considering road and cost condition. The VIDS spreads over freeway and national highway and plays an important role in ITS(Intelligent Transportation Systems). As a result, speed data accuracy drops form 50kph vehicle speed and volume and occupancy data accuracy drop from 30kph. Lowest speed data accuracy is only 88%, but volume and occupancy accuracy are 75% and 77% respectively. The reason VIDS data accuracy drop by vehicle speed is gap distance decrease between vehicles. Therefore, this paper suggests $17m{\sim}21m$ for optimal VIDS height considering road and cost condition.

Method for Designing VMS Messages Based on Drivers' Legibility Performance (운전자 판독능력을 고려한 VMS 메시지 설계 방법론 개발 및 적용)

  • Kim, Seong-Min;O, Cheol;Jang, Myeong-Sun;Kim, Tae-Hyeong
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.3
    • /
    • pp.99-109
    • /
    • 2007
  • Variable message signs (VMS), which are used for providing real-time information on traffic conditions and accident occurrences, are one of the important components of intelligent transportation systems VMS messages need to meet human factor requirements: messages should be readable and understandable while driving. Lab-controlled experiments on VMS messages were conducted to obtain useful data for analyzing drivers' responsive characteristics for VMS messages. Binary logistic regression (BLR) modeling techniques were applied to explore the relationships among drivers' message perceptions, message reading time, and amount of VMS messages. Probabilistic outcomes of the proposed BLR-based perception model could be greatly utilized to design VMS messages considering drivers' legibility performance. The major contribution of this study is to develop invaluable statistical models that can be used in designing VMS messages more effectively from the human factor point of view. The results could be further applied to establish the scheme of VMS message phase and duration.

Preference Analysis of Traffic Information Service Depending on Smart Phone Possession (스마트폰 보유여부에 따른 교통정보 제공 시스템의 선호도 분석)

  • HEO, Min;KIM, Hoe Kyoung
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.470-477
    • /
    • 2015
  • VMS informs the public of traffic and weather information in real time and functions to facilitate traffic flow. However, as smart phone navigation becomes more popular with the rapid propagation of the smart phone, the efficiency and applicability of VMS are challenged. Accordingly, this study aims to investigate the drivers' preference for the traffic information service between VMS and smart phone navigation by conducting a survey using a stated preference in Busan Metropolitan City in August 2013. This study found that 60% of survey respondents prefer VMS to the smart phone navigation. Further analysis to investigate the preference focused on the smart phone users revealed that female, younger, more educated, and less experienced drivers more rely on the smart phone navigation. Consequently, this study implicates that private and governmental institutes have to take a measure to develop the integrated traffic information system.

Vision-Based High Accuracy Vehicle Positioning Technology (비전 기반 고정밀 차량 측위 기술)

  • Jo, Sang-Il;Lee, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1950-1958
    • /
    • 2016
  • Today, technique for precisely positioning vehicles is very important in C-ITS(Cooperative Intelligent Transport System), Self-Driving Car and other information technology relating to transportation. Though the most popular technology for vehicle positioning is the GPS, its accuracy is not reliable because of large delay caused by multipath effect, which is very bad for realtime traffic application. Therefore, in this paper, we proposed the Vision-Based High Accuracy Vehicle Positioning Technology. At the first step of proposed algorithm, the ROI is set up for road area and the vehicles detection. Then, center and four corners points of found vehicles on the road are determined. Lastly, these points are converted into aerial view map using homography matrix. By analyzing performance of algorithm, we find out that this technique has high accuracy with average error of result is less than about 20cm and the maximum value is not exceed 44.72cm. In addition, it is confirmed that the process of this algorithm is fast enough for real-time positioning at the $22-25_{FPS}$.

Accuracy Estimation of Video Image Detector Considering Heteroscedasticity (이분산성을 고려한 영상검지기 정확도 추정)

  • Lee, Cheong-Won;Song, Yeong-Hwa
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.2 s.95
    • /
    • pp.7-15
    • /
    • 2007
  • The accuracy of a Video Image Detector (VID) is gradually reduced due to various environmental and mechanical factors. However, there has been no systematic research about the decrease of VID accuracy. To maintain a proper level of VID accuracy for advanced traffic management, a regular VID calibration process needs to be introduced. However, the calibration cannot be performed frequently because of the cost. In this study, the researchers collected field data for accuracy estimation and inferred an accuracy decreasing function by using regression and considering the heteroscedasticity problem. Using the invented data collection equipment which was used for checking adaptability, some data in the field were collected and analyzed. Although the data were limited, the results are promising. More data need to be investigated in the future and this study will help to maintain the data quality for broad utilization of the data in ITS centers.

A Dynamic Traffic Analysis Model for the Korean Expressway System using FTMS (FTMS 자료를 활용한 고속도로 Corridor 동적 분석)

  • Yu, Jeong-Hun;Lee, Mu-Yeong;Lee, Seung-Jun;Seong, Ji-Hong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.6
    • /
    • pp.129-137
    • /
    • 2009
  • Operation of intelligent transport systems technologies in transportation networks and more detailed analysis give rise to necessity of dynamic traffic analysis model. Existing static models describe network state in average. on the contrary, dynamic traffic analysis model can describe the time-dependent network state. In this study, a dynamic traffic model for the expressway system using FTMS data is developed. Time-dependent origin-destination trip tables for nationwide expressway network are constructed using TCS data. Computation complexity is critical issue in modeling nationwide network for dynamic simulation. A subarea analysis model is developed which converts the nationwide O-D trip tables into subarea O-D trip tables. The applicability of the proposed model is tested under various scenario. This study can be viewed as a starting point of developing deployable dynamic traffic analysis model. The proposed model needs to be expanded to include arterial as well without critical computation burden.