• 제목/요약/키워드: Intelligent service robots

검색결과 103건 처리시간 0.018초

인간과 감정적 상호작용을 위한 '감정 엔진' (Engine of computational Emotion model for emotional interaction with human)

  • 이연곤
    • 감성과학
    • /
    • 제15권4호
    • /
    • pp.503-516
    • /
    • 2012
  • 지금까지 로봇 및 소프트웨어 에이전트들을 살펴보면, 감정 모델이 내부에 종속적으로 존재하기 때문에 감정모델만을 별도로 분리해 새로운 시스템에 재활용하기란 쉽지 않다. 따라서 어떤 로봇 및 에이전트와 연동될 수 있는 Engine of computational Emotion model (이하 EE로 표시한다)을 소개한다. 이 EE는 어떤 입력 정보에도 치중되지 않고, 어떤 로봇 및 에이전트의 내부와도 연동되도록 독립적으로 감정을 담당하기 위해, 입력 단계인 인식과 출력 단계인 표현을 배제하고, 순수하게 감정의 생성 및 처리를 담당하는 중간 단계인 감정 발생만을 분리하여, '입력단 및 출력단과 독립적인 소프트웨어 형태, 즉 엔진(Engine)'으로 존재한다. 이 EE는 어떤 입력단 및 출력단과 상호작용이 가능하며, 자체 감정뿐 아니라 상대방의 감정을 사용하며, 성격을 활용하여 종합적인 감정을 산출해낸다. 또한 이 EE는 로봇 및 에이전트의 내부에 라이브러리 형태로 존재하거나, 별도의 시스템으로 존재하여 통신할 수 있는 구조로 활용될 수 있다. 감정은 Joy(기쁨), Surprise(놀람), Disgust(혐오), Fear(공포), Sadness(슬픔), Anger(분노)의 기본 감정을 사용하며, 문자열과 계수를 쌍으로 갖는 정보를 EE는 입력 인터페이스를 통해 입력 신호로 받고, 출력 인터페이스를 통해 출력 신호로 내보낸다. EE는 내부에 감정마다 감정경험의 연결 목록을 가지고 있으며, 이의 계수의 쌍으로 구성된 정보를 감정의 생성 및 처리하기 위한 감정상태 목록으로 사용한다. 이 감정경험 목록은 '인간이 실생활에서 경험하는 다양한 감정에 대한 이해를 도모'하는 감정표현어휘로 구성되어 있다. EE는 인간의 감정을 탐색하여 적절한 반응을 나타내주는 상호작용 제품에 이용 가능할 것이다. 본 연구는 제품이 '인간을 공감하고 있음'을 인간이 느낄 수 있도록 유도하는 시스템을 만들고자 함이므로, HRI(인간-로봇 상호작용)나 HCI(인간-컴퓨터 상호작용)와 관련 제품이 효율적인 감정적 공감 서비스를 제공하는데 도움이 될 수 있을 것으로 기대한다.

  • PDF

자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가 (Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving)

  • 조문기;배경율
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.191-207
    • /
    • 2021
  • 오늘날 이동통신은 급증하는 데이터 수요에 대응하기 위해서 주로 속도 향상에 초점을 맞추어 발전해 왔다. 그리고 5G 시대가 시작되면서 IoT, V2X, 로봇, 인공지능, 증강 가상현실, 스마트시티 등을 비롯하여 다양한 서비스를 고객들에게 제공하기위한 노력들이 진행되고 있고 이는 우리의 삶의 터전과 산업 전반에 대한 환경을 바꿀 것으로 예상되고 되고 있다. 이러한 서비스를 제공하기위해서 고속 데이터 속도 외에도, 실시간 서비스를 위한 지연 감소 그리고 신뢰도 등이 매우 중요한데 5G에서는 최대 속도 20Gbps, 지연 1ms, 연결 기기 106/㎢를 제공함으로써 서비스 제공할 수 있는 기반을 마련하였다. 하지만 5G는 고주파 대역인 3.5Ghz, 28Ghz의 높은 주파수를 사용함으로써 높은 직진성의 빠른 속도를 제공할 수 있으나, 짧은 파장을 가지고 있어 도달할 수 있는 거리가 짧고, 회절 각도가 작아서 건물 등을 투과하지 못해 실내 이용에서 제약이 따른다. 따라서 기존의 통신망으로 이러한 제약을 벗어나기가 어렵고, 기반 구조인 중앙 집중식 SDN 또한 많은 노드와의 통신으로 인해 처리 능력에 과도한 부하가 발생하기 때문에 지연에 민감한 서비스 제공에 어려움이 있다. 그래서 자율 주행 중 긴급 상황이 발생할 경우 사용 가능한 지연 관련 트리 구조의 제어 기능이 필요하다. 이러한 시나리오에서 차량 내 정보를 처리하는 네트워크 아키텍처는 지연의 주요 변수이다. 일반적인 중앙 집중 구조의 SDN에서는 원하는 지연 수준을 충족하기가 어렵기 때문에 정보 처리를 위한 SDN의 최적 크기에 대한 연구가 이루어져야 한다. 그러므로 SDN이 일정 규모로 분리하여 새로운 형태의 망을 구성 해야하며 이러한 새로운 형태의 망 구조는 동적으로 변하는 트래픽에 효율적으로 대응하고 높은 품질의 유연성 있는 서비스를 제공할 수 있다. 이러한 SDN 구조 망에서 정보의 변경 주기, RTD(Round Trip Delay), SDN의 데이터 처리 시간은 지연과 매우 밀접한 상관관계를 가진다. 이 중 RDT는 속도는 충분하고 지연은 1ms 이하이기에 유의미한 영향을 주는 요인은 아니지만 정보 변경 주기와 SDN의 데이터 처리 시간은 지연에 크게 영향을 주는 요인이다. 특히, 5G의 다양한 응용분야 중에서 지연과 신뢰도가 가장 중요한 분야인 지능형 교통 시스템과 연계된 자율주행 환경의 응급상황에서는 정보 전송은 매우 짧은 시간 안에 전송 및 처리돼야 하는 상황이기때문에 지연이라는 요인이 매우 민감하게 작용하는 조건의 대표적인 사례라고 볼 수 있다. 본 논문에서는 자율 주행 시 응급상황에서 SDN 아키텍처를 연구하고, 정보 흐름(셀 반경, 차량의 속도 및 SDN의 데이터 처리 시간의 변화)에 따라 차량이 관련정보를 요청해야 할 셀 계층과의 상관관계에 대하여 시뮬레이션을 통하여 분석을 진행하였다.

BERTopic을 활용한 인간-로봇 상호작용 동향 연구 (A Study on Human-Robot Interaction Trends Using BERTopic)

  • 김정훈;곽기영
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.185-209
    • /
    • 2023
  • 4차 산업혁명의 도래와 함께 다양한 기술이 주목을 받고 있다. 4차 산업혁명과 관련된 기술로는 IoT(Internet of Things), 빅데이터, 인공지능, VR(Virtual Reality), 3D 프린터, 로봇공학 등이 있으며 이러한 기술은 종종 융합된다. 특히 로봇 분야는 빅데이터, 인공지능, VR, 디지털 트윈과 같은 기술과 결합할 것으로 기대된다. 이에 따라 로봇을 활용한 연구가 다수 진행되고 있으며 유통, 공항, 호텔, 레스토랑, 교통 분야 등에 적용되고 있다. 이러한 상황에서 인간-로봇 상호작용에 대한 연구가 주목을 받고 있지만 아직 만족할 만한 수준에는 이르지 못하고 있다. 하지만 완벽한 의사소통이 가능한 로봇에 대한 연구가 꾸준히 이루어지고 있고 이는 인간의 감정노동을 대신할 수 있을 것으로 기대된다. 따라서 현재의 인간-로봇 상호작용 기술을 비즈니스에 적용할 수 있는지에 대한 논의가 필요하다. 이를 위해 본 연구는 첫째, 인간로봇 상호작용 기술의 동향을 살펴본다. 둘째, LDA(Latent Dirichlet Allocation) 토픽모델링과 BERTopic 토픽모델링 방법을 비교한다. 연구 결과, 1992년~2002년 간의 연구에서는 인간-로봇 상호작용에 대한 개념과 기초적인 상호작용에 대해 논의되고 있었다. 2003년~2012년에는 사회적 표현에 대한 연구가 많이 진행되었으며 얼굴검출, 인식 등과 같이 판단과 관련된 연구도 수행되었다. 2013년~2022년에는 노인 간호, 교육, 자폐 치료와 같은 서비스 토픽들이 등장하였으며, 사회적 표현에 대한 연구가 지속되었다. 그러나 아직까지 비즈니스에 적용할 수 있는 수준에는 이르지 못한 것으로 보인다. 그리고 LDA토픽모델링과 BERTopic 토픽모델링 방법을 비교한 결과 LDA에 비해 BERTopic이 더 우수한 방법임을 확인하였다.