• 제목/요약/키워드: Intelligent sensor

검색결과 1,309건 처리시간 0.03초

Development of a Six-Axis Force/Moment Sensor with Rectangular Taper Beams for an Intelligent Robot

  • Kim, Gab-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권4호
    • /
    • pp.419-428
    • /
    • 2007
  • This paper describes the development of a six-axis force/moment sensor with rectangular taper beams for an intelligent robot's wrist and ankle. In order to accurately push and pull an object with an intelligent robot's hand, and in order to safely walk with an intelligent robot's foot, the robot's wrist and ankle should measure three forces Fx, Fy, and Fz, and three moments Mx, My, and Mz simultaneously from the mounted six-axis force/moment sensor to the intelligent robot's wrist and ankle. Unfortunately, the developed six-axis force/moment sensor utilized in other industrial fields is not proper for an intelligent robot's wrist and ankle in the size and the rated output of the six-axis force/moment sensor. In this paper, the structure of a six-axis force/moment sensor with rectangular taper beams was newly modeled for an intelligent robot's wrist and ankle, and the sensing elements were designed by using the derived equations, following which the six-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements. Moreover, the characteristic test of the developed sensor was carried out by using the six-component force/moment sensor testing machine. The rated outputs from the derived equations agree well with those from the experiments. The interference error of the sensor is less than 2.87%.

3 축 힘센서를 이용한 지능형 그리퍼 개발 (Development of the Intelligent Gripper Using Two 3-axis Force Sensor)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.47-54
    • /
    • 2007
  • This paper describes the development of the intelligent gripper with two 3-axis force sensor that can measure forces Fx, Fy, Fz simultaneously, for stably grasping an unknown object. In order to grasp an unknown object using an intelligent gripper softly, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured farces. Thus, the intelligent gripper should be composed of 3-axis force sensor that can measure forces Fx, Fy, Fz at the same time. In this paper, the intelligent gripper with two 3-axis force sensor was manufactured and its characteristic test was carried out. The fabricated gripper could grasp an unknown object stably. Also, the sensing element of 3-axis force sensor was modeled and designed with five parallel-plate beams, and 3-axis force sensor for the intelligent gripper was fabricated. The characteristic test of the made sensor was carried out.

스마트 IT 융합 플랫폼을 위한 지능형 센서 기술 동향 (Intelligent Sensor Technology Trend for Smart IT Convergence Platform)

  • 김혜진;진한빛;염우섭;김이경;박강호
    • 전자통신동향분석
    • /
    • 제34권5호
    • /
    • pp.14-25
    • /
    • 2019
  • As the Internet of Things, artificial intelligence and big data have received a lot of attention as key growth engines in the era of the fourth industrial revolution, data acquisition and utilization in mobile, automotive, robotics, manufacturing, agriculture, health care and national defense are becoming more important. Due to numerous data-based industrial changes, demand for sensor technologies is exploding, especially for intelligent sensor technologies that combine control, judgement, storage and communication functions with the sensors's own functions. Intelligent sensor technology can be defined as a convergence component technology that combines intelligent sensor units, intelligent algorithms, modules with signal processing circuits, and integrated plaform technologies. Intelligent sensor technology, which can be applied to variety of smart IT convergence services such as smart devices, smart homes, smart cars, smart factory, smart cities, and others, is evolving towards intelligent and convergence technologies that produce new high-value information through recognition, reasoning, and judgement based on artificial intelligence. As a result, development of intelligent sensor units is accelerating with strategies for miniaturization, low-power consumption and convergence, new form factor such as flexible and stretchable form, and integration of high-resolution sensor arrays. In the future, these intelligent sensor technologies will lead explosive sensor industries in the era of data-based artificial intelligence and will greatly contribute to enhancing nation's competitiveness in the global sensor market. In this report, we analyze and summarize the recent trends in intelligent sensor technologies, especially those for four core technologies.

사람 보행시 발바닥의 힘정보를 측정하기 위한 지능형 신발시스템 개발 (Development of lntelligent Shoe System to Measure Applied Force/Moment on the Sole of a Foot during Human Walking)

  • 김갑순;김현민;허덕찬
    • 한국정밀공학회지
    • /
    • 제25권7호
    • /
    • pp.79-86
    • /
    • 2008
  • This paper describes the development of wearing intelligent shoe system to measure applied forces and moments (ground reaction forces and moments) on the soles of feet during human walking. In order to walk safely, robot must get the intelligent feet with 6-axis force/moment sensors (Fx sensor (x-direction force sensor), Fy sensor, Fz sensor, Mx sensor (Mx : x-direction moment sensor), My sensor, and Mz sensor) and detect the forces and moments data from the sensors. And the feet must be controlled with the data and controllers. While a human is walking, the forces and moments should be measured and analyzed for robot's intelligent feet. Therefore, the wearing intelligent shoe system should be developed. In this paper, four 6-axis farce/moment sensors and two high speed measuring devices were designed and fabricated, and the wearing intelligent shoe system was made using these. The characteristic tests of the wearing intelligent shoe system were performed, and the forces and moments were detected using it.

로봇의 지능형 손을 위한 3축 손가락 힘센서 개발 (Development of 3-axis finger force sensor for an intelligent robot's hand)

  • 김갑순
    • 센서학회지
    • /
    • 제15권6호
    • /
    • pp.411-416
    • /
    • 2006
  • This paper describes the development of a 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand. In order to safely grasp an unknown object, robot's hand should measure the weight of an object and the force of grasping direction simultaneous. But, in the published papers, the grippers and hands equippd with the force sensor that could only measure the force of grasping direction, and grasped objects using their sensors. These grippers and hands can't safely grasp unknown objects, because they can't measure the weight of it. Thus, it is necessary to develop 3-axis force sensor that can measure the weight of an object and the force of grasping direction for an intelligent gripper. In this paper, 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand was developed. In order to fabricate a 3-axis finger force sensor, the sensing elements were modeled using parallel plate beams, and the theoretical analysis was performed to determine the size of sensing elements, then the 3-axis finger force sensor was fabricated. Also, the characteristic test of the developed 3-axis finger force sensor was performed.

지능형 제어기법 및 센서 인터페이스를 이용한 이족 보행 로봇의 동적보행 제어 (Dynamic Walking Control of Biped Walking Robot using Intelligent Control Method and Sensor Interface)

  • 고재원;임동철
    • 전기학회논문지P
    • /
    • 제56권4호
    • /
    • pp.161-167
    • /
    • 2007
  • This paper introduces a dynamic walking control of biped walking robot using intelligent sensor interface and shows an intelligent control method for biped walking robot. For the dynamic walking control of biped walking robot, serious motion controllers are used. They are main controller(using INTEL80C296SA MPU), sub controller(using TMS320LF2406 DSP), sensor controller(using Atmega128 MPU) etc. The used sensors are gyro sensor, tilt sensor, infrared sensor, FSR sensor etc. For the feasibility of a dynamic walking control of biped walking robot, we use the biped walking robot which has twenty-five degrees of freedom(D.O.F.) in total. Our biped robot is composed of two legs of six D.O.F. each, two arms of five D.O.F. each, a waist of two D.O.F., a head of one D.O.F.

지능형 센서의 데이터 처리 모듈 개발 (Development of data processing module of intelligent sensor)

  • 김인욱;임동진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.954-956
    • /
    • 1999
  • In the case of using sensor in the industrial control systems, the location of sensor is not close to the system which utilizes the sensor data. Two main functions of intelligent sensor are data processing and communication. In this paper, we will show that the developed result of intelligent sensor, which process the sensor data inside of the sensor module, except for the communication function. For this, we refered to the Profibus and Fieldbus Foundation standard.

  • PDF

무선 센서 네트워크 기반의 빌딩 조명 제어 시스템 (Intelligent building light control system based on wireless sensor network)

  • 장정훈;유준재;윤명현;이명수;임호정;이민구;장동설
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.174-176
    • /
    • 2006
  • Sensor network supports data delivery from Physical world to cyber space. Sensors get physical events then wireless network transfers sensor data to service server. We use sensor network technology to light control system for intelligent building. In ubiquitous computing environment. wireless sensor network is basic tool for intelligent service. In this paper, we propose intelligent building light control system based on wireless sensor network. It is implemented using previous light control product, can be adopted to present building light system.

  • PDF

Development of a Joint Torque Sensor Fully Integrated with an Actuator

  • Kim, Bong-Seok;Yun, Seung-Kook;Kang, Sung-Chul;Hwang, Chang-Soon;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1679-1683
    • /
    • 2005
  • This paper suggests the new type of a joint torque sensor which is attached at each joint of a manipulator for making compliance. Previous six axis force/torque sensors are high cost and installed end-effector of the manipulator. However, torque on links of previous an end-effector cannot be measured. We design a joint torque sensor that can be fully integrated with an actuator in order to measure applying torque of the manipulator. The sensor system is designed through the structural analysis. The proposed joint torque sensors are installed to the 6 DOF manipulator of a mobile robot for hazardous works and we implemented experiments of measuring applied torque to the manipulator. By the experiment, we proved that the proposed low-cost joint torque sensor gives acceptable performance when we control a manipulator.

  • PDF

지능형 절연열화센서 개발 (Development of Intelligent Insulation Degradation Sensor)

  • 김이곤
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.158-161
    • /
    • 2002
  • Many methods were proposed for insulation degradation diagnosis to High voltage and capacity Transformer in live. IDD is difficult by those methods because insulation degradation circumstances and characteristics of electrical plant are different with other Therefore, it is necessary to design diagnosis algorithms fitting for each. In this paper, We develop IIDS that used diagnosis algorithm with fuzzy model and hardware with MCU.