• Title/Summary/Keyword: Intelligent robot

Search Result 1,469, Processing Time 0.036 seconds

Analysis of Instinct.Intuition.Reason Algorithm for Soccer Robot (축구 로봇의 본능.직관.이성 알고리즘 분석)

  • 최환도;김재헌;김중완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.309-313
    • /
    • 2002
  • This paper presents an artificial intelligent model for a soccer robot. We classified soccer robot as artificial intelligent model into three elemental groups including instinct intuition and reason. Instinct is responsible for keeping the ball, walking or rushing toward the ball. This is very simple fundamental action without regard to associates and enemies. Intuition contributes to the faster/slower moving and simple basic turning to get near to the ball and to make a goal noticing associates and enemies. Reason is the most intelligent part, the law of reason is not simple relatively with instinct and intuition. We shall expect to design the best law of reason for a soccer robot some time. We also compared nerve system and muscles of human being model with controller and motors of a physical soccer robot model individually. We had designed several algorithms and made programs to investigate effects and control soccer robot.

  • PDF

Development of Intelligent Mobile Robot with electronic nose

  • Byun, Hyung-Gi;Ham, Yu-Kyung;Kim, Jung-Do;Park, Ji-Hyeok;Shon, Won-Ryul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.137.2-137
    • /
    • 2001
  • We have been developed an intelligent mobile robot with an artificial olfactory function to recognize odours and to track odour source location. This mobile robot also has been installed an engine for speech recognition and synthesis, and is controlled by wireless communication. An artificial olfactory system based on array of 7 gas sensors has been installed in the mobile robot for odour recognition, and 11 gas sensors also are located in the bottom of robot to track odour sources. 3 optical sensors are also included in the intelligent mobile robot, which is driven by 2 D.C. motors, for clash avoidance in a way of direction toward an odour source. Throughout the experimental trails, it is confirmed that the intelligent mobile robot is capable of not only the odour recognition using artificial neural network algorithm, but also the tracking odour source using the step-by-step approach method ...

  • PDF

Control of Mobile Robot Using Voice Recognition and Wearable Module (음성인식과 웨어러블 모듈을 이용한 이동로봇 제어)

  • 정성호;서재용;김용민;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.37-40
    • /
    • 2002
  • Intelligent Wearable Module is intelligent system that arises when a human is part of the feedback loop of a computational process like a certain control system. Applied system is mobile robot. This paper represents the mobile robot control system remote controlled by Intelligent Wearable Module. So far, owing to the development of internet technologies, lots of remote control methods through internet have been proposed. To control a mobile robot through internet and guide it under unknown environment, We propose a control method activated by Intelligent Wearable Module. In a proposed system, PDA acts as a user interface to communicate with notebook as a controller of the mobile robot system using TCP/IP protocol, and the notebook controls the mobile robot system. Tlle information about the direction and velocity of the mobile robot feedbacks to the PDA and the PDA send new control method produced from the fuzzy inference engine.

  • PDF

Fuzzy Neural Network Based Sensor Fusion and It's Application to Mobile Robot in Intelligent Robotic Space

  • Jin, Tae-Seok;Lee, Min-Jung;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • In this paper, a sensor fusion based robot navigation method for the autonomous control of a miniature human interaction robot is presented. The method of navigation blends the optimality of the Fuzzy Neural Network(FNN) based control algorithm with the capabilities in expressing knowledge and learning of the networked Intelligent Robotic Space(IRS). States of robot and IR space, for examples, the distance between the mobile robot and obstacles and the velocity of mobile robot, are used as the inputs of fuzzy logic controller. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a sensor fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process. Preliminary experiment and results are shown to demonstrate the merit of the introduced navigation control algorithm.

Development of Force Sensors of Toes and Heel for Humanoid Robot's Intelligent Foot (인간형 로봇의 지능형 발의 발가락 및 뒤꿈치 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.61-68
    • /
    • 2010
  • In order to let the humanoid robot walk on the uneven terrains, the robot's foot should have the similar structure and function as human's. The intelligent foot should be made up of toes and heel. When it walks on the uneven terrains, the foot's sole senses the force and adjusts foot's position before robot losing his balance. In this paper, the force sensors of robot's intelligent foot for having the similar structure and function like human are developed. The heel 3-axis force/moment sensor and toe force sensors for humanoid robot's intelligent foot is developed, and the characteristic tests of them are carried out. As a result of characteristic test, the interference error of the heel 3-axis force/moment sensor is less than 2.2%. It is thought that the developed force sensors could be used to measure the reaction forces which is applied the toes and the heel of a humanoid robot.

Human Robot Interaction via Intelligent Space

  • Hideki Hashimoto;Lee, Joo-Ho;Kazuyuki Morioka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.49.1-49
    • /
    • 2002
  • $\textbullet$ Intelligent Space 1. Optimal Camera Arrangement 2. People Tracking 3. Physical Robot 4. Robot Control 5. People Following Robot $\textbullet$ Initial stage for making high-level human robot interaction. http://dfs.iis.u-tokyo.ac.jp/∼leejooho/ispace/.

  • PDF

Intelligent robot system (지능 로보트 시스템)

  • 정명진;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.21-25
    • /
    • 1986
  • An intelligent robot system can be regarded as the most generalized machine system that can perform a variety of tasks under unpredictable and unstructured environment with some intelligence. Robotics research topics related to four functions of the intelligent robot system are discussed. Also current research activities in Japan and Korea are discussed briefly.

  • PDF

Novel Ubiquitous Concept of Real Reality Robot Game Controlled by Mobile Server Robot

  • Joo, Byoung-Kyu;Jeon, Poong-Woo;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2481-2485
    • /
    • 2003
  • In this paper novel concept of real reality robot game controlled by a mobile server robot is proposed. Real reality robot game means that two real robots controlled by two human operator through the internet are playing a boxing game. The mobile server robot captures playing images of the boxing game and send them to GUI on the screen of human operators’ PC. The human operator can login to boxing game from any computer in any place if he/she is permitted. Remote control of boxing robot by a motion capture system through network is implemented. Successful motion control of a boxing robot remotely controlled by a motion capture system through network can be achieved.

  • PDF

Internet-Based Remote Control of the Intelligent Robot (지능형 로봇의 인터넷 기반 원격 제어)

  • Yu, Young-Sun;Kim, Jong-Sun;Kim, Hyong-Suk;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.242-248
    • /
    • 2007
  • In this paper, we implement the internet-based remote control system for intelligent robot. For remote control of the robot, it uses the socket communication of the TCP/IP. It consists of the user interface and the robot control interface. Robot control interface transmits the navigation and environmental informations of the robot into the user interface. In order to transmit the large environmental images, a JPEG compression algorithm is used. User interface displays the navigation status of the robot and transmits the navigation order into the robot control interface. Also, we propose the design method of the fuzzy controller using navigation data acquired by expert's knowledge or experience. To do this, we use virus-evolutionary genetic algorithm(VEGA). Finally, we have shown the proposed system can be operated through the real world experimentations.