• Title/Summary/Keyword: Intelligent query

Search Result 180, Processing Time 0.026 seconds

The National Standard Real Situation Conformance Test System for a Nation-wide Interoperable Transportation Card (전국호환 교통카드 국가 표준 실환경 적합성 평가)

  • Nam, Na-kyung;Lee, Soo-kyung;Lee, Ki-han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.68-76
    • /
    • 2016
  • The pre-paid nation-wide interoperable transportation card, which an pay fee of bus, subway, train, and highway with just one card, released in June. 2014. It has started and operated from Seoul, Gyeonggi, and major local metropolitan area. In this paper, after starting of service, we evaluate conformance and interoperability of nation-wide interoperable transportation card system in real situation. Through this, we check the status of its technical operation. For this, we choose 6 region included Seoul, Gyeonggi which are serviced by different transport vendors and check recognition and billing result from field of transportation card terminal. As a result, we can reach that the major nation-wide interoperable transportation card operate normally and deliver CONFIG DF query command. It means nation-wide interoperable transportation card system which use only one card stably adapt the public transport system and it can make user's public transport use convenience higher through the extension of service area.

k-NN Query Processing Algorithm based on the Matrix of Shortest Distances between Border-point of Voronoi Diagram (보로노이 다이어그램의 경계지점 최소거리 행렬 기반 k-최근접점 탐색 알고리즘)

  • Um, Jung-Ho;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.105-114
    • /
    • 2009
  • Recently, location-based services which provides k nearest POIs, e.g., gas stations, restaurants and banks, are essential such applications as telematics, ITS(Intelligent Transport Systems) and kiosk. For this, the Voronoi Diagram k-NN(Nearest Neighbor) search algorithm has been proposed. It retrieves k-NNs by using a file storing pre-computed network distances of POIs in Voronoi diagram. However, this algorithm causes the cost problem when expanding a Voronoi diagram. Therefore, in this paper, we propose an algorithm which generates a matrix of the shortest distance between border points of a Voronoi diagram. The shortest distance is measured each border point to all of the rest border points of a Voronoi Diagram. To retrieve desired k nearest POIs, we also propose a k-NN search algorithm using the matrix of the shortest distance. The proposed algorithms can m inim ize the cost of expanding the Voronoi diagram by accessing the pre-computed matrix of the shortest distances between border points. In addition, we show that the proposed algorithm has better performance in terms of retrieval time, compared with existing works.

  • PDF

PubMine: An Ontology-Based Text Mining System for Deducing Relationships among Biological Entities

  • Kim, Tae-Kyung;Oh, Jeong-Su;Ko, Gun-Hwan;Cho, Wan-Sup;Hou, Bo-Kyeng;Lee, Sang-Hyuk
    • Interdisciplinary Bio Central
    • /
    • v.3 no.2
    • /
    • pp.7.1-7.6
    • /
    • 2011
  • Background: Published manuscripts are the main source of biological knowledge. Since the manual examination is almost impossible due to the huge volume of literature data (approximately 19 million abstracts in PubMed), intelligent text mining systems are of great utility for knowledge discovery. However, most of current text mining tools have limited applicability because of i) providing abstract-based search rather than sentence-based search, ii) improper use or lack of ontology terms, iii) the design to be used for specific subjects, or iv) slow response time that hampers web services and real time applications. Results: We introduce an advanced text mining system called PubMine that supports intelligent knowledge discovery based on diverse bio-ontologies. PubMine improves query accuracy and flexibility with advanced search capabilities of fuzzy search, wildcard search, proximity search, range search, and the Boolean combinations. Furthermore, PubMine allows users to extract multi-dimensional relationships between genes, diseases, and chemical compounds by using OLAP (On-Line Analytical Processing) techniques. The HUGO gene symbols and the MeSH ontology for diseases, chemical compounds, and anatomy have been included in the current version of PubMine, which is freely available at http://pubmine.kobic.re.kr. Conclusions: PubMine is a unique bio-text mining system that provides flexible searches and analysis of biological entity relationships. We believe that PubMine would serve as a key bioinformatics utility due to its rapid response to enable web services for community and to the flexibility to accommodate general ontology.

Design of Lazy Classifier based on Fuzzy k-Nearest Neighbors and Reconstruction Error (퍼지 k-Nearest Neighbors 와 Reconstruction Error 기반 Lazy Classifier 설계)

  • Roh, Seok-Beom;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2010
  • In this paper, we proposed a new lazy classifier with fuzzy k-nearest neighbors approach and feature selection which is based on reconstruction error. Reconstruction error is the performance index for locally linear reconstruction. When a new query point is given, fuzzy k-nearest neighbors approach defines the local area where the local classifier is available and assigns the weighting values to the data patterns which are involved within the local area. After defining the local area and assigning the weighting value, the feature selection is carried out to reduce the dimension of the feature space. When some features are selected in terms of the reconstruction error, the local classifier which is a sort of polynomial is developed using weighted least square estimation. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods such as standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees.

Schemes for Managing Semantic Web Data in Ubiquitous Environment (유비쿼터스 환경을 고려한 시맨틱 웹 데이터 관리 기법 연구)

  • Kim, Youn-Hee;Kim, Jee-Hyun
    • Journal of Digital Contents Society
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • One important issue to generalize the ubiquitous paradigm is the development of user-centralized and intelligent ubiquitous computing systems. Sharing knowledge and correct communication between users and devices are needed to be aware of continuous changed context information and infer services for which users are suited. The goal of this paper is to describe and manage effectively the meaning of services or data which each device offers for interaction between users and devices based on semantic relationships and reasoning. In this paper, we represent semantic data using OWL and design a ubiquitous based intelligent system. We propose some index structures and strategies to process queries classified by each subsystem and adopt labeling schemes to identify classes and resources in the semantic data. We can find devices which satisfies various user's requests exactly and quickly using the proposed strategies.

  • PDF

Function Approximation for accelerating learning speed in Reinforcement Learning (강화학습의 학습 가속을 위한 함수 근사 방법)

  • Lee, Young-Ah;Chung, Tae-Choong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.635-642
    • /
    • 2003
  • Reinforcement learning got successful results in a lot of applications such as control and scheduling. Various function approximation methods have been studied in order to improve the learning speed and to solve the shortage of storage in the standard reinforcement learning algorithm of Q-Learning. Most function approximation methods remove some special quality of reinforcement learning and need prior knowledge and preprocessing. Fuzzy Q-Learning needs preprocessing to define fuzzy variables and Local Weighted Regression uses training examples. In this paper, we propose a function approximation method, Fuzzy Q-Map that is based on on-line fuzzy clustering. Fuzzy Q-Map classifies a query state and predicts a suitable action according to the membership degree. We applied the Fuzzy Q-Map, CMAC and LWR to the mountain car problem. Fuzzy Q-Map reached the optimal prediction rate faster than CMAC and the lower prediction rate was seen than LWR that uses training example.

Modeling a Multi-Agent based Web Mining System on the Hierarchical Web Environment (계층적 웹 환경에서의 멀티-에이전트 기반 웹 마이닝 시스템 설계)

  • Yoon, Hee-Byung;Kim, Hwa-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.643-648
    • /
    • 2003
  • In order to provide efficient retrieving results for user query on the web environment, the various searching algorithms have developed and considered user's preference and convenience. However, the searching algorithms are developed on the horizontal and non hierarchical web environment in general and could not apply to the complex hierarchical and functional web environments such like the enterprise network. In this paper, we purpose the multi-agent based web mining system which can provide the efficient mining results to the user on the special web environment. For doing this, we suggest the network model with the hierarchical web environment and model the multi agent based web mining system which has four corporation agents and fourteen process modules. Then, we explain the detailed functions of each agent considered the hierarchical environment according to the module. Especially, we purpose the new merging agent and improved ranking algorithm by using the graph theory.

Dynamic Recommendation System for a Web Library by Using Cluster Analysis and Bayesian Learning (군집분석과 베이지안 학습을 이용한 웹 도서 동적 추천 시스템)

  • Choi, Jun-Hyeog;Kim, Dae-Su;Rim, Kee-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.385-392
    • /
    • 2002
  • Collaborative filtering method for personalization can suggest new items and information which a user hasn t expected. But there are some problems. Not only the steps for calculating similarity value between each user is complex but also it doesn t reflect user s interest dynamically when a user input a query. In this paper, classifying users by their interest makes calculating similarity simple. We propose the a1gorithm for readjusting user s interest dynamically using the profile and Bayesian learning. When a user input a keyword searching for a item, his new interest is readjusted. And the user s profile that consists of used key words and the presence frequency of key words is designed and used to reflect the recent interest of users. Our methods of adjusting user s interest using the profile and Bayesian learning can improve the real satisfaction of users through the experiment with data set, collected in University s library. It recommends a user items which he would be interested in.

PIRS : Personalized Information Retrieval System using Adaptive User Profiling and Real-time Filtering for Search Results (적응형 사용자 프로파일기법과 검색 결과에 대한 실시간 필터링을 이용한 개인화 정보검색 시스템)

  • Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.21-41
    • /
    • 2010
  • This paper proposes a system that can serve users with appropriate search results through real time filtering, and implemented adaptive user profiling based personalized information retrieval system(PIRS) using users' implicit feedbacks in order to deal with the problem of existing search systems such as Google or MSN that does not satisfy various user' personal search needs. One of the reasons that existing search systems hard to satisfy various user' personal needs is that it is not easy to recognize users' search intentions because of the uncertainty of search intentions. The uncertainty of search intentions means that users may want to different search results using the same query. For example, when a user inputs "java" query, the user may want to be retrieved "java" results as a computer programming language, a coffee of java, or a island of Indonesia. In other words, this uncertainty is due to ambiguity of search queries. Moreover, if the number of the used words for a query is fewer, this uncertainty will be more increased. Real-time filtering for search results returns only those results that belong to user-selected domain for a given query. Although it looks similar to a general directory search, it is different in that the search is executed for all web documents rather than sites, and each document in the search results is classified into the given domain in real time. By applying information filtering using real time directory classifying technology for search results to personalization, the number of delivering results to users is effectively decreased, and the satisfaction for the results is improved. In this paper, a user preference profile has a hierarchical structure, and consists of domains, used queries, and selected documents. Because the hierarchy structure of user preference profile can apply the context when users perfomed search, the structure is able to deal with the uncertainty of user intentions, when search is carried out, the intention may differ according to the context such as time or place for the same query. Furthermore, this structure is able to more effectively track web documents search behaviors of a user for each domain, and timely recognize the changes of user intentions. An IP address of each device was used to identify each user, and the user preference profile is continuously updated based on the observed user behaviors for search results. Also, we measured user satisfaction for search results by observing the user behaviors for the selected search result. Our proposed system automatically recognizes user preferences by using implicit feedbacks from users such as staying time on the selected search result and the exit condition from the page, and dynamically updates their preferences. Whenever search is performed by a user, our system finds the user preference profile for the given IP address, and if the file is not exist then a new user preference profile is created in the server, otherwise the file is updated with the transmitted information. If the file is not exist in the server, the system provides Google' results to users, and the reflection value is increased/decreased whenever user search. We carried out some experiments to evaluate the performance of adaptive user preference profile technique and real time filtering, and the results are satisfactory. According to our experimental results, participants are satisfied with average 4.7 documents in the top 10 search list by using adaptive user preference profile technique with real time filtering, and this result shows that our method outperforms Google's by 23.2%.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.