• Title/Summary/Keyword: Intelligent optimization

Search Result 746, Processing Time 0.025 seconds

Rule-based Hybrid Discretization of Discrete Particle Swarm Optimization for Optimal PV System Allocation (PV 시스템의 최적 배치 문제를 위한 이산 PSO에서의 규칙 기반 하이브리드 이산화)

  • Song, Hwa-Chang;Ko, Jae-Hwan;Choi, Byoung-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.792-797
    • /
    • 2011
  • This paper discusses the application of a hybrid discretiziation method for the discretization procedure that needs to be included in discrete particle swarm optimization (DPSO) for the problem of allocating PV (photovoltaic) systems onto distribution power systems. For this purpose, this paper proposes a rule-based expert system considering the objective function value and its optimizing speed as the input parameters and applied it to the PV allocation problem including discrete decision variables. For multi-level discretization, this paper adopts a hybrid method combined with a simple rounding and sigmoid funtion based 3-step and 5-step quantization methods, and the application of the rule based expert system proposing the adequate discretization method at each PSO iteration so that the DPSO with the hybrid discretization can provide better performance than the previous DPSO.

Intelligent Scheduling Control of Networked Control Systems with Networked-induced Delay and Packet Dropout

  • Li, Hongbo;Sun, Zengqi;Chen, Badong;Liu, Huaping;Sun, Fuchun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.915-927
    • /
    • 2008
  • Networked control systems(NCSs) have gained increasing attention in recent years due to their advantages and potential applications. The network Quality-of-Service(QoS) in NCSs always fluctuates due to changes of the traffic load and available network resources. To handle the network QoS variations problem, this paper presents an intelligent scheduling control method for NCSs, where the sampling period and the control parameters are simultaneously scheduled to compensate the effect of QoS variation on NCSs performance. For NCSs with network-induced delays and packet dropouts, a discrete-time switch model is proposed. By defining a sampling-period-dependent Lyapunov function and a common quadratic Lyapunov function, the stability conditions are derived for NCSs in terms of linear matrix inequalities(LMIs). Based on the obtained stability conditions, the corresponding controller design problem is solved and the performance optimization problem is also investigated. Simulation results are given to demonstrate the effectiveness of the proposed approaches.

Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.313-331
    • /
    • 2017
  • In this study, teaching-learning based optimization (TLBO) is improved by incorporating model of multiple teachers, adaptive teaching factor, self-motivated learning, and learning through tutorial. Modified TLBO (MTLBO) is applied for simultaneous topology, shape, and size optimization of space and planar trusses to study its effectiveness. All the benchmark problems are subjected to stress, displacement, and kinematic stability constraints while design variables are discrete and continuous. Analyses of unacceptable and singular topologies are prohibited by seeing element connectivity through Grubler's criterion and the positive definiteness. Performance of MTLBO is compared to TLBO and state-of-the-art algorithms available in literature, such as a genetic algorithm (GA), improved GA, force method and GA, ant colony optimization, adaptive multi-population differential evolution, a firefly algorithm, group search optimization (GSO), improved GSO, and intelligent garbage can decision-making model evolution algorithm. It is observed that MTLBO has performed better or found nearly the same optimum solutions.

Design and Experimental Demonstration of Coaxially Folded All-reflective Imaging System

  • Xiong, Yupeng;Dai, Yifan;Chen, Shanyong;Tie, Guipeng
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.227-235
    • /
    • 2019
  • With slimmer, lighter and all-reflective imaging systems in high demand for consumer and military applications, coaxially folded optical image systems are widely considered because they can extend focal length and reduce track length. Most of these systems consist of multiple surfaces, and these surfaces are machined on one element or grouping processing on two elements. In this paper, we report and first experimentally demonstrate an all-aluminum all-reflective optical system which consists of two optical elements, with two high order aspherical surfaces in each element. The coaxially folded system is designed with Seidel aberration theory and advanced optimization with Zemax. The system is made of all-aluminum material processing by single point diamond turning (SPDT). On this basis, we completed the system integration and performed an imaging experiment. The final system has the advantages of short track length and long focal length and broad application prospects in the micro-unmanned aerial vehicle field.

Evolutionary Approach for Traveling Salesperson Problem with Precedence Constraints

  • Moon, Chi-Ung;Yun, Young-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.305-308
    • /
    • 2007
  • In this paper we suggest an efficient evolutionary approach based on topological sort techniques for precedence constrained TSPs. The determination of optimal sequence has much to offer to downstream project management and opens up new opportunities for supply chains and logistics. Experimental results show that the suggested approach is a good alternative to locate optimal solution for complicated precedence constrained sequencing as in optimization method for instance.

  • PDF

Optimization of the Radial Basis Function Network Using Time-Frequency Localization (시간-주파수 분석을 이용한 방사 기준 함수 구조의 최적화)

  • 김성주;김용택;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.459-462
    • /
    • 2000
  • In this paper, we propose the initial optimized structure of the Radial Basis Function Network which is more simple in the part of the structure and converges more faster than Neural Network with the analysis method using Time-Frequency Localization. When we construct the hidden node with the Radial Basis Function whose localization is similar with an approximation target function in the plane of the Time and Frequency, we make a good decision of the initial structure having an ability of approximation.

  • PDF

Compromise possibility portfolio selections

  • Tanaka, Hideo;Guo, Peijun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.659-662
    • /
    • 1998
  • In this paper, lower and upper possibility distributions are identified to reflect two extreme opinions in portfolio selection problems based on upper and lower possibility distributions are formalized as quadratic programming problems. Portfolios for compromising two extreme opinions from upper and lower possibility distributions and balancing the opinions of a group of experts can be obtained by quadratic optimization problems, respectively.

  • PDF

A Study on the Dynamics of Genetic Algorithm Based on Stochastic Differential Equation (유전 알고리즘의 확률 미분방정식에 의한 동역학 분석에 대한 연구)

  • 석진욱;조성원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.296-300
    • /
    • 1997
  • Recently, the genetic algorithm has been applied to the various types of optimization problems and these attempts have very successfully. However, in most cases on these approaches, there is not given by investigator about to the theoritical analysis. The reason that the analysis of the dynamics for genetic algorithm is not clear, is the probablitic aspect of genetic algorithm. In this paper, we investigate the analysis of the internal dynamics for genetic algorithm using stochastic differential method. In addition, we provide a new genetic algorithm, based on the study of the convergence property for the genetic algorithm.

  • PDF

An Optimal Design Procedure for Brain-state-in-a-box Neural Network (BSB 신경망을 위한 최적 설계방안)

  • 임영희;박대희;박주영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.87-95
    • /
    • 1997
  • This paper presents an optimal design procedure to realize an BSB neural networks by means of the parametrization of solution space and optimization of parameters using evaluation program. In particular, the performance index based on DOA analysis may make an associative memory implementation reach on the level of practical success.

  • PDF

Virtual Cluster based Recombination Operator and Generation Gap Model for Evolutionary Algorithm (진화 알고리즘을 위한 가상 클러스터 기반 재조합 연산자 및 세대차 모델)

  • Choi, Jun-Seok;Seo, Ki-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.288-291
    • /
    • 2008
  • 본 논문은 실수 진화 알고리즘에 대해서 가상의 클러스터를 이용한 재조합 연산자 및 새로운 세대차 모델을 소개한다. 가상 클러스터의 자가 적응적인 크기 변화를 통해 자손의 생성범위를 적절히 조절하고, 선택과 대치를 포함한 진화방식을 개선하여 효율적인 세대차 크기를 구함으로서, 개체의 다양성 유지 및 탐색성능의 향상을 꾀하였다. 제안된 방법을 벤치마크 테스트 문제에 적용하여 G3 알고리즘과 CMA-ES 등과 성능을 비교하였다.

  • PDF