• Title/Summary/Keyword: Intelligent machine

Search Result 1,071, Processing Time 0.034 seconds

Ensemble Model Based Intelligent Butterfly Image Identification Using Color Intensity Entropy (컬러 영상 색채 강도 엔트로피를 이용한 앙상블 모델 기반의 지능형 나비 영상 인식)

  • Kim, Tae-Hee;Kang, Seung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.972-980
    • /
    • 2022
  • The butterfly species recognition technology based on machine learning using images has the effect of reducing a lot of time and cost of those involved in the related field to understand the diversity, number, and habitat distribution of butterfly species. In order to improve the accuracy and time efficiency of butterfly species classification, various features used as the inputs of machine learning models have been studied. Among them, branch length similarity(BLS) entropy or color intensity entropy methods using the concept of entropy showed higher accuracy and shorter learning time than other features such as Fourier transform or wavelet. This paper proposes a feature extraction algorithm using RGB color intensity entropy for butterfly color images. In addition, we develop butterfly recognition systems that combines the proposed feature extraction method with representative ensemble models and evaluate their performance.

Hybrid Trust Computational Model for M2M Application Services (M2M 애플리케이션 서비스를 위한 하이브리드형 신뢰 평가 모델)

  • Kim, Yukyong
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.53-62
    • /
    • 2020
  • In the end-user domain of an IoT environment, there are more and more intelligent M2M devices that provide resources to create and share application services. Therefore, it can be very useful to manage trust by transferring the role of the existing centralized service provider to end users in a P2P environment. However, in a decentralized M2M computing environment where end users independently provide or consume services, mutual trust building is the most important factor. This is because malicious users trying to build malfunctioning services can cause security problems in M2M computing environments such as IoT. In this paper, we provide an integrated analysis and approach for trust evaluation of M2M application services, and an optimized trust evaluation model that can guarantee reliability among users of the M2M community.

A Survey on Deep Learning-based Analysis for Education Data (빅데이터와 AI를 활용한 교육용 자료의 분석에 대한 조사)

  • Lho, Young-uhg
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.240-243
    • /
    • 2021
  • Recently, there have been research results of applying Big data and AI technologies to the evaluation and individual learning for education. It is information technology innovations that collect dynamic and complex data, including student personal records, physiological data, learning logs and activities, learning outcomes and outcomes from social media, MOOCs, intelligent tutoring systems, LMSs, sensors, and mobile devices. In addition, e-learning was generated a large amount of learning data in the COVID-19 environment. It is expected that learning analysis and AI technology will be applied to extract meaningful patterns and discover knowledge from this data. On the learner's perspective, it is necessary to identify student learning and emotional behavior patterns and profiles, improve evaluation and evaluation methods, predict individual student learning outcomes or dropout, and research on adaptive systems for personalized support. This study aims to contribute to research in the field of education by researching and classifying machine learning technologies used in anomaly detection and recommendation systems for educational data.

  • PDF

Crack detection in folded plates with back-propagated artificial neural network

  • Oguzhan Das;Can Gonenli;Duygu Bagci Das
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.319-334
    • /
    • 2023
  • Localizing damages is an essential task to monitor the health of the structures since they may not be able to operate anymore. Among the damage detection techniques, non-destructive methods are considerably more preferred than destructive methods since damage can be located without affecting the structural integrity. However, these methods have several drawbacks in terms of detecting abilities, time consumption, cost, and hardware or software requirements. Employing artificial intelligence techniques could overcome such issues and could provide a powerful damage detection model if the technique is utilized correctly. In this study, the crack localization in flat and folded plate structures has been conducted by employing a Backpropagated Artificial Neural Network (BPANN). For this purpose, cracks with 18 different dimensions in thin, flat, and folded structures having 150, 300, 450, and 600 folding angle have been modeled and subjected to free vibration analysis by employing the Classical Plate Theory with Finite Element Method. A Four-nodded quadrilateral element having six degrees of freedom has been considered to represent those structures mathematically. The first ten natural frequencies have been obtained regarding healthy and cracked structures. To localize the crack, the ratios of the frequencies of the cracked flat and folded structures to those of healthy ones have been taken into account. Those ratios have been given to BPANN as the input variables, while the crack locations have been considered as the output variables. A total of 500 crack locations have been regarded within the dataset obtained from the results of the free vibration analysis. To build the best intelligent model, a feature search has been conducted for BAPNN regarding activation function, the number of hidden layers, and the number of hidden neurons. Regarding the analysis results, it is concluded that the BPANN is able to localize the cracks with an average accuracy of 95.12%.

A Study on the Intelligent Recognition of a Various Electronic Components and Alignment Method with Vision (지능적인 이형부품 인식과 비전 정렬 방법에 관한 연구)

  • Gyunseob Shin;Jongwon Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.1-5
    • /
    • 2024
  • In the electronics industry, a lot of research and development is being conducted on electronic component supply, component alignment and insertion, and automation of soldering on the back side of the PCB for automatic PCB assembly. Additionally, as the use of electronic components increases in the automotive component field, there is a growing need to automate the alignment and insertion of components with leads such as transistors, coils, and fuses on PCB. In response to these demands, the types of PCB and parts used have been more various, and as this industrial trend, the quantity and placement of automation equipment that supplies, aligns, inserts, and solders components has become important in PCB manufacturing plants. It is also necessary to reduce the pre-setting time before using each automation equipment. In this study, we propose a method in which a vision system recognizes the type of component and simultaneously corrects alignment errors during the process of aligning and inserting various types of electronic components. The proposed method is effective in manufacturing various types of PCBs by minimizing the amount of automatic equipment inserted after alignment with the component supply device and omitting the preset process depending on the type of component supplied. Also the advantage of the proposed method is that the structure of the existing automatic insertion machine can be easily modified and utilized without major changes.

  • PDF

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.

Development of an Editor and Howling Engine for Realtime Software Programmable Logic Controller based on Intelligent Agents (지능적 에이전트에 의한 실시간 소프트웨어 PLC 편집기 및 실행엔진 개발)

  • Cho, Young-In
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1271-1282
    • /
    • 2005
  • Recently, PC-based control is incredibly developed in the industrial control field, but it is difficult for PLC programming in PC. Therefore, I need to develop the softeware PLC, which support the international PLC programming standard(IECl131-3) and can be applied to diverse control system by using C language. In this paper, I have developed the ISPLC(Intelligent Agent System based Software Programmable Logic Controller). In ISPLC system, LD programmed by a user which is used over $90\%$ among the 5 PLC languages, is converted to IL, which is one of intermediate codes, and IL is converted to the standard C rode which can be used in a commercial editor such as Visual C++. In ISPLC, the detection of logical error in high level programming(C) is more eaier than PLC programming itself The study of code conversion of LD->IL->C is firstly tried in the world as well as KOREA. I developed an execution engine with a good practical application. To show the effectiveness of the developed system, 1 applied it to a practical case, a real time traffic control(RT-TC) system. ISPLC is minimized the error debugging and programming time owing to be supported by windows application program.

Development of Music Classification of Light and Shade using VCM and Beat Tracking (VCM과 Beat Tracking을 이용한 음악의 명암 분류 기법 개발)

  • Park, Seung-Min;Park, Jun-Heong;Lee, Young-Hwan;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.884-889
    • /
    • 2010
  • Recently, a music genre classification has been studied. However, experts use different criteria to classify each of these classifications is difficult to derive accurate results. In addition, when the emergence of a new genre of music genre is a newly re-defined. Music as a genre rather than to separate search should be classified as emotional words. In this paper, the feelings of people on the basis of brightness and darkness tries to categorize music. The proposed classification system by applying VCM(Variance Considered Machines) is the contrast of the music. In this paper, we are using three kinds of musical characteristics. Based on surveys made throughout the learning, based on musical attributes(beat, timbre, note) was used to study in the VCM. VCM is classified by the trained compared with the results of the survey were analyzed. Note extraction using the MATLAB, sampled at regular intervals to share music via the FFT frequency analysis by the sector average is defined as representing the element extracted note by quantifying the height of the entire distribution was identified. Cumulative frequency distribution in the entire frequency rage, using the difference in Timbre and were quantified. VCM applied to these three characteristics with the experimental results by comparing the survey results to see the contrast of the music with a probability of 95.4% confirmed that the two separate.

A Methodology of AI Learning Model Construction for Intelligent Coastal Surveillance (해안 경계 지능화를 위한 AI학습 모델 구축 방안)

  • Han, Changhee;Kim, Jong-Hwan;Cha, Jinho;Lee, Jongkwan;Jung, Yunyoung;Park, Jinseon;Kim, Youngtaek;Kim, Youngchan;Ha, Jeeseung;Lee, Kanguk;Kim, Yoonsung;Bang, Sungwan
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.77-86
    • /
    • 2022
  • The Republic of Korea is a country in which coastal surveillance is an imperative national task as it is surrounded by seas on three sides under the confrontation between South and North Korea. However, due to Defense Reform 2.0, the number of R/D (Radar) operating personnel has decreased, and the period of service has also been shortened. Moreover, there is always a possibility that a human error will occur. This paper presents specific guidelines for developing an AI learning model for the intelligent coastal surveillance system. We present a three-step strategy to realize the guidelines. The first stage is a typical stage of building an AI learning model, including data collection, storage, filtering, purification, and data transformation. In the second stage, R/D signal analysis is first performed. Subsequently, AI learning model development for classifying real and false images, coastal area analysis, and vulnerable area/time analysis are performed. In the final stage, validation, visualization, and demonstration of the AI learning model are performed. Through this research, the first achievement of making the existing weapon system intelligent by applying the application of AI technology was achieved.

Development of an intelligent skin condition diagnosis information system based on social media

  • Kim, Hyung-Hoon;Ohk, Seung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.241-251
    • /
    • 2022
  • Diagnosis and management of customer's skin condition is an important essential function in the cosmetics and beauty industry. As the social media environment spreads and generalizes to all fields of society, the interaction of questions and answers to various and delicate concerns and requirements regarding the diagnosis and management of skin conditions is being actively dealt with in the social media community. However, since social media information is very diverse and atypical big data, an intelligent skin condition diagnosis system that combines appropriate skin condition information analysis and artificial intelligence technology is necessary. In this paper, we developed the skin condition diagnosis system SCDIS to intelligently diagnose and manage the skin condition of customers by processing the text analysis information of social media into learning data. In SCDIS, an artificial neural network model, AnnTFIDF, that automatically diagnoses skin condition types using artificial neural network technology, a deep learning machine learning method, was built up and used. The performance of the artificial neural network model AnnTFIDF was analyzed using test sample data, and the accuracy of the skin condition type diagnosis prediction value showed a high performance of about 95%. Through the experimental and performance analysis results of this paper, SCDIS can be evaluated as an intelligent tool that can be used efficiently in the skin condition analysis and diagnosis management process in the cosmetic and beauty industry. And this study can be used as a basic research to solve the new technology trend, customized cosmetics manufacturing and consumer-oriented beauty industry technology demand.