• 제목/요약/키워드: Intelligent image processing

검색결과 418건 처리시간 0.025초

지능형 오디오 및 비전 패턴 기반 1인 가구 이상 징후 탐지 알고리즘 (Intelligent Abnormal Event Detection Algorithm for Single Households at Home via Daily Audio and Vision Patterns)

  • 정주호;안준호
    • 인터넷정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.77-86
    • /
    • 2019
  • 1인 가구의 수가 증가함에 따라 1인 가구의 구성원이 집안에서 심각한 부상을 당할 경우 혼자 도움을 청하기 쉽지 않다. 본 연구는 집안에서 1인 가구의 구성원이 심각한 부상을 당했을 때 비일상적인 상태를 탐지한다. 홈 CCTV를 기반으로 수집된 영상을 통해 패턴을 분석 및 인식하는 영상 탐지 알고리즘을 제안한다. 또한, 스마트폰을 기반으로 집안에서 발생하는 소리의 패턴을 분석 및 인식하는 음성탐지 알고리즘도 제안한다. 각각의 알고리즘만 사용할 경우, 단점이 존재하여 넓은 영역에서 심각한 부상과 같은 상황을 탐지하기 어렵다. 그래서 두 알고리즘을 효율적으로 결합한 융합 방식을 제안한다. 각각 탐지 알고리즘의 성능과 제안된 융합 방식의 정확한 탐지성능을 평가했다.

옵티컬 플로우 분석을 통한 불법 유턴 차량 검지 (Detection of Illegal U-turn Vehicles by Optical Flow Analysis)

  • 송창호;이재성
    • 한국통신학회논문지
    • /
    • 제39C권10호
    • /
    • pp.948-956
    • /
    • 2014
  • 오늘날 지능형 영상 검지기 시스템(Intelligent Vehicle Detection System)이 추구하는 방향은 기존 시스템의 교통 소통 정보 습득을 넘어서 교통정체, 사고 등과 같은 부정적인 요인을 줄이는 것이다. 본 논문에서는 도로 교통법규 위반 상황 중에서 가장 치명적인 사고를 유발 할 수 있는 불법 유턴 차량을 검지하는 알고리즘을 제안한다. 영상의 옵티컬 플로우 벡터(Optical Flow Vector)를 구하고 이 벡터가 불법 유턴 경로 상에 나타난다면 불법 유턴차량에 의해 생긴 벡터일 확률이 높을 것이라는 점에 착안하여 연구를 진행했다. 옵티컬 플로우 벡터를 구하기 전에 연산량 절감을 위하여 코너(corner)와 같은 특징점을 선지정한 후 그 점들에 대해서만 추적하는 피라미드 루카스-카나데(pyramid Lucas-Kanade) 알고리즘을 사용했다. 이 알고리즘은 연산량이 매우 높기 때문에 먼저 컬러 정보와 진보된 확률적 허프 변환(progressive probabilistic hough transform)으로 중앙선을 검출하고 그 주위 영역에만 적용시켰다. 그리고 검출된 벡터들 중 불법 유턴 경로위의 벡터들을 선별하고 이 벡터들이 불법 유턴 차량에 의해 생긴 벡터들인지 확인하기 위해 신뢰도를 검증하여 불법 유턴 차량을 검지하였다. 최종적으로 알고리즘의 성능을 평가하기 위해 알고리즘별 처리시간을 측정하였으며 본 논문에서 제안한 알고리즘이 효율적임을 증명하였다.

축구 로봇의 공격 의도 추출기 설계 (Development of Attack Intention Extractor for Soccer Robot system)

  • 박해리;정진우;변증남
    • 전자공학회논문지CI
    • /
    • 제40권4호
    • /
    • pp.193-205
    • /
    • 2003
  • 지능 제어, 통신, 컴퓨터 및 센서 기술, 영상 처리, 메카트로닉스 등과 같은 다양한 분야에서 로봇 축구 시스템에 대한 연구가 진행되고 있다. 그중 전략 연구는 대부분 공격 전략 연구에 치중하고 있으며, 점차 지능적인 공격 전략을 구현하는 방향으로 흘러가고 있다. 이에 따라 과거의 단순한 수비 전략으로는 완전한 수비가 불가능하게 되었다. 따라서, 지능적인 공격을 효율적으로 수비할 수 있는 수비 전략이 필요하며, 효율적인 수비를 위하여 공격자 로봇의 의도 추출이 필요하다. 본 논문에서는, 퍼지 최대 최소 신경망을 이용한 축구 로봇의 공격 의도 추출기를 설계하였다. 첫째로 축구 로봇 시스템에서의 의도를 정의하고 의도 추출에 대하여 설명한다. 다음으로 설계한 퍼지 최대 최소 신경망을 이용하여 설계한 축구 로봇의 의도 추출기에 대하여 설명한다. 퍼지 최대 최소 신경망은 패턴분류 방법 중의 하나로 온라인 적용, 짧은 학습 시간, 소프트 결정(soft decision) 등의 많은 장점을 갖고 있다. 따라서, 다이나믹한 환경을 가진 축구 로봇 시스템의 의도 추출에 적합하다. 이 의도 추출기는 상대 팀 로봇이 공격시 어떠한 상황에서 어떠한 행동을 할 것인가를 미리 알아내어 수비 시 이용할 수 있도록 하며, 학습을 통하여 의도 추출을 함으로써 상대 팀 경기를 보고 팀의 전략을 파악하는 전략 분석기로도 사용이 가능하다. 자체 제작한 3대3 로봇 축구 시뮬레이터를 이용하여 시뮬레이션을 하였으며, 학습을 함에 따라서 의도 추출률이 증가함을 확인할 수 있었다.

3차원 공간의 인식을 위한 블록기반 3D맵 (A Block based 3D Map for Recognizing Three Dimensional Spaces)

  • 이정수;김준성
    • 전자공학회논문지CI
    • /
    • 제49권4호
    • /
    • pp.89-96
    • /
    • 2012
  • 지능형 서비스 분야에 있어 3D맵은 유용하고 다양한 정보를 제공할 수 있다. 기존의 삼차원 공간에 대한 연구 방법들은 제공하는 데이터가 원초적이고 처리량이 방대하여 지능형 서비스의 실시간 처리에는 적절하지 못하다. 본 논문에서는 전방의 공간에 대하여 스테레오 정합 연산의 결과인 거리정보 이미지를 바탕으로 블록 기반의 맵을 구성하여 해당 공간의 다양한 정보를 제공할 수 있는 방안을 제안한다. 블록기반 3D맵은 객체율과 블록크기의 2개의 중요한 변수를 가진다. 객체율은 하나의 블록에서 공간대비 객체의 픽셀수의 비율로써 블록종류를 결정한다. 블록크기는 정육면체로 구성되는 개별 블록의 한 변의 픽셀수를 나타내며, 블록의 크기를 결정한다. 실험을 통하여 블록기반 3D맵은 기존의 거리정보 이미지에 비하여 노이즈와 데이터양을 효과적으로 감소시키는 것을 확인하였다. $320{\times}240$크기의 거리정보 이미지에 대하여 블록크기는 $40{\times}40$, 객체율은 30%에서 50%로 설정하였을 때 가장 정합율이 높은 블록기반 3D맵을 취득할 수 있음을 확인하였다. 블록기반 3D맵은 지능형 서비스분야에서 사용하기 용이하고 다양한 새로운 서비스를 도출할 수 있는 고부가가치를 갖는 정보를 제공할 수 있다.

VANETs 환경에서 단일 교차로의 교통신호 제어방법에 관한 연구 (A study on traffic signal control at signalized intersections in VANETs)

  • 장형준;박귀태
    • 한국ITS학회 논문지
    • /
    • 제10권6호
    • /
    • pp.108-117
    • /
    • 2011
  • 서울시는 2001년부터 실시간 신호제어시스템(COSMOS)를 운영하고 있으며, 도시부 신호교차로의 신호운영 자료인 포화도 및 대기길이의 산출을 위하여 검지기를 설치해 차량으로부터 기초자료를 습득하고 있다. 현재 가장 보편적으로 사용하는 것은 유도성 루프검지기로 도로의 노면에 매설하는 방식이라 유지 보수가 용이하지 않고 비용이 많이 드는 단점이 있다. 또한 대기길이의 산정시 검지기를 통과하는 차량의 속도만으로 계산해야하기 때문에 속도측정 오차 발생시에 대기길이의 값에 영향을 미치게 된다. 제안하는 알고리즘은 카메라, 센서 및 이미지처리 장치와 같은 추가적인 장치 없이, VANETs(Vehicular Ad-hoc Networks)의 차량 간의 통신을 이용하고 각 방향별 그룹을 설정하여 교차로에서 원활한 교통 흐름을 가능케 하는 실시간 교통신호 제어 시스템을 제안한다. 본 연구에서 제안한 알고리즘은 GLD(Green Light District) Simulator를 기반으로 단일교차로 모델에서 AJWT(Average Junction Waiting Time)와 TQL(Total Queue Length) 에 대해서 확인하였으며 그 결과를 무작위(Random) 제어방식 및 최상우선(Best first) 제어방식과 비교하여 더 나은 결과를 보였다. 향후 VANETs를 활용한 실시간 제어방법이 보편화 될 경우 무선 통신기술을 이용한 교차로의 교통제어기술을 제안한 본 연구는 그 활용가치가 높을 것으로 판단된다.

차량용 블랙박스 영상에서의 실시간 기상정보 검지 (Detection of The Real-time Weather Information from a Vehicle Black Box)

  • 강주미;이재성
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.320-323
    • /
    • 2014
  • 오늘날 교통환경의 고도화는 지능형 교통 시스템(Intelligent Transportation System)과 함께 진행되고 있으며 차량용 블랙박스, 모바일기기 등의 대중화와 함께 안전하고 편리한 서비스를 제공하는데 일조하고 있다. 교통상황은 다양한 원인에 의해 시시각각 변화하며, 특히 갑작스러운 폭우, 우박, 눈길 등과 같이 공공의 힘으로 제어할 수 없는 외부 요인으로 인해 운전자가 이를 대비하지 못하여 큰 사고로 이어지는 경우가 비일비재하다. 이를 방지하기 위해 운전자간 실시간으로 기상정보를 전달하는 시스템이 필요하다. 본 논문은 실시간 기상정보전달을 위한 기상정보 검지알고리즘을 제안한다. 본 알고리즘은 와이퍼의 움직임과 맑은날의 히스토그램 간 Contrast를 이용하여 기상상황을 검지한다. 일반적으로 악천후 상황에서 와이퍼를 사용하게 되며, 눈이나 비 등에 따라 다른 Contrast값을 가지게 된다. 이를 이용해 맑은 상황, 눈이 오는 상황, 눈이 쌓인 상황, 비오는 상황 등을 판단하였다. 우선, 연산량을 줄이기 위해 와이퍼를 검지할 수 있는 최소영역을 ROI(Region Of Interest)로 지정하고, 차량 와이퍼의 밝기를 임계값으로 하는 Thresholding 연산을 통해 와이퍼를 검출하였다. 또한, 맑은 날과 악천후상황의 Value 값을 이용해 Contrast를 구하였으며 이를 통해 각각의 기상상황을 구별하였다. 실험결과 비오는 상황은 약 87%, 눈이 내리는 상황은 약 82% 검지율을 얻을 수 있었다.

  • PDF

Faster R-CNN을 이용한 갓길 차로 위반 차량 검출 (Detecting Vehicles That Are Illegally Driving on Road Shoulders Using Faster R-CNN)

  • 고명진;박민주;여지호
    • 한국ITS학회 논문지
    • /
    • 제21권1호
    • /
    • pp.105-122
    • /
    • 2022
  • 최근 5년간 고속도로에서 발생한 사망 사고의 통계를 살펴보면, 고속도로 전체 사망자 중 갓길에서 발생한 사망자의 사망률이 약 3배 높은 것으로 나타났다. 이는 갓길 사고 발생 시 사고의 심각도가 매우 높다는 것을 보여주며, 갓길 차로 위반 차량을 단속하여 사고를 미연에 방지하는 것이 중요하다는 것을 시시한다. 이에 본 연구는 Faster R-CNN 기법을 활용하여 갓길 차로 위반 차량을 검출할 수 있는 방법을 제안하였다. Faster R-CNN 기법을 기반으로 차량을 탐지하고, 추가적인 판독 모듈을 구성하여 갓길 위반 여부를 판단하였다. 실험 및 평가를 위해 현실세계와 유사하게 상황을 재현할 수 있는 시뮬레이션 게임인 GTAV를 활용하였다. 이미지 형태의 학습데이터 1,800장과 평가데이터 800장을 가공 및 생성하였으며, ZFNet과 VGG16에서 Threshold 값의 변화에 따른 성능을 측정하였다. 그 결과 Threshold 0.8 기준 ZFNet 99.2%, Threshold 0.7 기준 VGG16 93.9%의 검출율을 보였고, 모델 별 평균 검출 속도는 ZFNet 0.0468초, VGG16 0.16초를 기록하여 ZFNet의 검출율이 약 7% 정도 높았으며, 검출 속도 또한 약 3.4배 빠름을 확인하였다. 이는 비교적 복잡하지 않은 네트워크에서도 입력 영상의 전처리 없이 빠른 속도로 갓길 차로 위반 차량의 검출이 가능함을 보여주며, 실제 영상자료 기반의 학습데이터셋을 충분히 확보한다면 지정 차로 위반 검출에 본 알고리즘을 활용할 수 있다는 것을 시사한다.

배달 이륜차 라이더 교통 법규 위반 단속 연구 (A Study on the Enforcement of Violation of Traffic Laws by Delivery Motorcycle Riders)

  • 조용빈;김진태;임준범;오상태
    • 한국ITS학회 논문지
    • /
    • 제21권1호
    • /
    • pp.182-192
    • /
    • 2022
  • 이륜차 전체 사고는 연평균 10.01% 증가하며, 사망자 수 또한 2.64% 증가하는 추세이다. 사륜차의 경우 도로에서 안전 운전을 강제할 수 있도록 단속 카메라가 설치되어있다. 그러나 이 단속 카메라는 사륜차 단속이 주목적이기 때문에 이륜차 단속 기능을 기대할 수 없다. 이륜차 단속은 현장 인력 투입을 통한 현장 단속에 의존할 수밖에 없다. 최근 이륜차 위법 행위 단속을 위해 경찰청에서는 '경찰청 SMART 국민제보'를 통한 이륜차 위법 행위를 국민 신고를 통해 수행 중이나 장기 지속되기 어렵다. 인력을 지속적으로 투입해야하는 유인 단속의 효과를 극대화 시킬 수 있는 적절한 단속 방안의 마련이 필요하다. 본 연구를 통해 배달 이륜차 라이더를 관리할 수 있도록 하는 제도적 장치인 배달 이륜차 라이더 자격증 ID 4종을 제안하였다. 또한, 배달 이륜차 자격증 ID 체계를 활용한 단속 실험을 수행하여 배달 이륜차 라이더 자격증 단속이 가능 여부를 D-MESO 프로그램을 통해 확인하였다.

허혈성 뇌졸중을 위한 뇌 자기공명영상의 의미적 특징 기반 템플릿 중심 의료 영상 매핑 기법 (Brain MRI Template-Driven Medical Images Mapping Method Based on Semantic Features for Ischemic Stroke)

  • 박예슬;이미연;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권2호
    • /
    • pp.69-78
    • /
    • 2016
  • 허혈성 뇌졸중은 뇌혈관의 혈전이나 색전에 의해 뇌 혈류가 감소하게 되어 뇌 조직이 기능을 못하는 질환으로, 질환의 특성상 뇌혈관의 폐색 여부를 확인하는 것이 중요하기 때문에 질환의 진단에 있어서 의료 영상이 필수적으로 활용된다. 그 중에서도 뇌 자기공명영상은 뇌의 구조적인 정보들을 얻을 수 있어 질환을 진단하는데 그 지표로 널리 활용되고 있다. 하지만 허혈성 뇌졸중과 같은 응급 질환의 경우 빠른 진단과 처치에 도움이 될 수 있는 지능적인 시스템이 요구됨에 비해, 기존의 의료 영상 저장 시스템으로는 신속하고 직관적인 영상 정보 제공이 어렵다. 즉, 기존의 시스템은 피상적인 메타 데이터를 이용하여 의료 영상을 관리하고 있어 의료 영상에 내재된 주요 의미적 정보를 고려하지 못하고 있다. 따라서 본 논문에서는 뇌 자기공명영상이 내포하고 있는 주요 의미적인 정보인 뇌의 해부학적 구조와 같은 영상 정보를 제공할 수 있도록 하는 템플릿 중심의 영상 매핑 기법을 제안하고자 한다. 제안하는 기법은 방대한 양의 영상을 대표할 수 있는 대표 영상(템플릿)을 선정하여 의미적 특징과 대표 영상(템플릿) 사이의 대응성을 정립하고, 전문가(의사)에 의해서만 분석될 수 있는 영상 사이의 의미적 연관성을 표면화 시켜 의미 기반의 영상 관리를 가능케 한다.

지정맥 인식 시스템을 이용한 심박신호 검출 (Heart Rate Signal Extraction by Using Finger vein Recognition System)

  • 복진영;서건하;이의철
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제9권6호
    • /
    • pp.701-709
    • /
    • 2019
  • 최근에 헬스케어와 관련된 다양한 분야에서 생체신호 중 하나인 심박신호가 사용되고 있다. 기존에 제안된 심박신호 검출 방법으로는 접촉식 방법이 대부분이었지만, 피사체가 장치를 접촉하고 있어야 한다는 불편함의 문제가 있었다. 이를 해결하기 위해 최근 비접촉식 방법에 의한 검출 연구가 진행되고 있다. 본 논문에서는 지정맥 인식을 위해 설계된 손가락 영상 촬영 장치를 이용해 심박 유사 신호를 얻어내는 방법을 제안한다. 검출된 심박 유사 신호는 지정맥의 위조 여부 판단과 심박 신호를 통한 다양한 응용분야에 활용될 수 있다. 제안하는 방법은 적외선을 이용한 지정맥 영상의 시간 도메인상의 밝기 값의 변화로부터 신호를 검출하고 영상처리 기반 알고리즘을 이용해 주파수 도메인으로 변환하였다. 변환 후, 대역 통과 필터링을 통해 심박신호와 관련이 없는 노이즈를 제거하였다. 신호의 정확성을 판단하기 위해 지정맥 획득 장치와 식품의약품안전처로부터 승인을 받은 접촉식 PPG 센서를 이용해 동시에 취득된 두 신호의 상관관계를 분석하였다. 결과적으로, 지정맥 영상을 통해 비접촉식으로 검출된 심박신호가 실제 심박신호의 파형과 일치함을 확인하는 것이 가능했다.