• Title/Summary/Keyword: Intelligent Vehicle

Search Result 1,432, Processing Time 1.187 seconds

Development of Tire Vertical Force Estimation Algorithm in Real-time using Tire Inner Surface Deformation (타이어 내부 표면 변형량을 이용한 타이어 수직하중 실시간 추정 알고리즘 개발)

  • Lee, Jaehoon;Kim, Jin-Oh;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.142-147
    • /
    • 2013
  • Over the past few years, intelligent tire is developed very actively for more accurate measurement of real-time tire forces generated during vehicle driving situation. Information on the force of intelligent tire could be used very usefully to chassis control systems of a vehicle. Intelligent tire is based on deformation of tire's inner surface from the waveform of a SAW, or Surface Acoustic Wave. The tire vertical force is estimated by using variance analysis of sensor signals. The estimated tire vertical force is compared with the tire vertical force generated during vehicle driving situation in real-time environment. The scope of this paper is a correlation study between the measured sensor signals and the tire vertical force generated during vehicle driving situation.

Application of Intelligent Wearable Computing (지능형 웨어러블 컴퓨팅의 응용)

  • Kim, Seong-Joo;Jung, Sung-Ho;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.304-309
    • /
    • 2004
  • This work proposes the wearable and intelligent system to control mobile vehicle instead of user. The system having the ability of assistance as well as portable can be applied to various controller. It is possible to observe the state of mobile vehicle and have a good command of robot instead of human. In this paper, the wearable system operating the mobile vehicle by deciding the velocity and rotation angle that are demanded for collision avoidance with the obtained driving information from mobile vehicle is implemented. To make the proposed wearable system have an intelligence, the hierarchical fuzzy logic and neural network are used.

IEEE 1451 based Smart Module for In-vehicle Networking Systems in Intelligent Vehicles (지능형 차량에서 IVN 시스템을 위한 IEEE 1451 기반 스마트 모듈의 개발)

  • Kim, Man-Ho;Ryu, Se-Hyung;Lee, Kyung-Chang;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.168-171
    • /
    • 2003
  • As vehicles are more intelligent for convenience and safety of drivers, the in-vehicle networking systems and smart modules are essential components for intelligent vehicles. However, for the smart module to widely apply to the IVN systems, two problems are considered as follows. Firstly, because it is very difficult that transducer manufacturers developed the smart module that supports the existing all IVN protocols, the smart module must be independent to the type of networking protocols. Secondly, when the smart module is exchanged due to its failure, it is necessary how the transducer is only exchanged without exchange of the microprocessor and network transceiver. This paper deals with the IEEE 1451 based smart module that describes the digital interface between a network transceiver and sensor module. Finally. efficiency of the IEEE 1451 based smart module was evaluated on the experimental model.

  • PDF

Age-related Deficits in Response Characteristics on Safety Warning of Intelligent Vehicle (지능형 자동차의 안전 경고음에 대한 고령운전자의 반응 특성)

  • Kim, Man-Ho;Lee, Yong-Tae;Son, Joon-Woo;Jang, Chee-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.131-137
    • /
    • 2009
  • Recent technological advances made a vehicle more intelligent to increase safety and comfort. An intelligent vehicle provides drivers with safety warning information through audible sounds, visual displays, and tactile devices. However, elderly drivers have been known to decrease the physical and cognitive abilities such as muscular strength, hearing, eyesight, short term memory, and spatial perception. Therefore, possible age-related deficits should be considered to design an effective warning system. This paper aims to evaluate the impact of advancing age on response performance on audible safety warnings which are widely used for alerting driving hazards. In order to understand the effect of age-related hearing loss and movement slowing, three sound characteristics (frequency, intensity, and period) and three age groups (younger, middle, and older) are considered. Data was drawn from 38 drivers who drove a simulated rural road in a driving simulator. Experimental results show that age influences driver's response performance. In conclusion, the appropriate range of a warning sound is suggested.

Real Time Multiple Vehicle Detection Using Neural Network with Local Orientation Coding and PCA

  • Kang, Jeong-Gwan;Oh, Se-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.636-639
    • /
    • 2003
  • In this paper, we present a robust method for detecting other vehicles from n forward-looking CCD camera in a moving vehicle. This system uses edge and shape information to detect other vehicles. The algorithm consists of three steps: lane detection, ehicle candidate generation, and vehicle verification. First after detecting a lane from the template matching method, we divide the road into three parts: left lane, front lane, and right lane. Second, we set the region of interest (ROI) using the lane position information and extract a vehicle candidate from the ROI. Third, we use local orientation coding (LOC) edge image of the vehicle candidate as input to a pretrained neural network for vehicle recognition. Experimental results from highway scenes show the robustness and effectiveness of this method.

  • PDF

IMAGE PROCESSING TECHNIQUES FOR LANE-RELATED INFORMATION EXTRACTION AND MULTI-VEHICLE DETECTION IN INTELLIGENT HIGHWAY VEHICLES

  • Wu, Y.J.;Lian, F.L.;Huang, C.P.;Chang, T.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.513-520
    • /
    • 2007
  • In this paper, we propose an approach to identify the driving environment for intelligent highway vehicles by means of image processing and computer vision techniques. The proposed approach mainly consists of two consecutive computational steps. The first step is the lane marking detection, which is used to identify the location of the host vehicle and road geometry. In this step, related standard image processing techniques are adapted for lane-related information. In the second step, by using the output from the first step, a four-stage algorithm for vehicle detection is proposed to provide information on the relative position and speed between the host vehicle and each preceding vehicle. The proposed approach has been validated in several real-world scenarios. Herein, experimental results indicate low false alarm and low false dismissal and have demonstrated the robustness of the proposed detection approach.

Development of Steering Actuator for Unmanned Vehicle Based on Magnetic Marker (자계기반 무인차량을 위한 조향장치의 개발)

  • Im, Dae-Yeong;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.375-380
    • /
    • 2009
  • In this paper, a steering actuator is designed and developed for an unmanned vehicle based on magnetic marker. One of the most important component of an unmanned vehicle is a steering actuator to follow magnetic road. Thus, we develop a steering actuator using a stepping motor and adopt to a new frequency control method depended on speed of the vehicle. In order to verify the usability of the developed system, the setup of unmanned vehicle installed the designed steering actuator is tested on magnetic road.

Optimal Traffic Information using Fuzzy Neural Network

  • Hong, You-Sik;Lee, Choul--Ki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.105-111
    • /
    • 2003
  • This paper is researching the storing of 40 different kinds of conditions. Such as, car speed, delay in starting time and the volume of cars in traffic. Through the use of a central nervous networking system or AI, using 10 different intersecting roads. We will improve the green traffic light. And allow more cars to easily flow through the intersections. Now days, with increasing many vehicles on restricted roads, the conventional traffic light creates prove startup-delay time and end-lag-time. The conventional traffic light loses the function of optimal cycle. And so, 30-45% of conventional traffic cycle is not matched to the present traffic cycle. In this paper proposes electro sensitive traffic light using fuzzy look up table method which will reduce the average vehicle waiting time and improve average vehicle speed. Computer simulation results prove that reducing the average vehicle waiting time which proposed considering passing vehicle length for optimal traffic cycle is better than fixed signal method which dosen't consider vehicle length.

A Study of Head Up Display System for Next Generation Vehicle (차세대 자동차 통합스마트 모니터 시스템에 관한 연구)

  • Yun, Sung-Ha;Son, Hui-Bae;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.439-444
    • /
    • 2011
  • In this paper, we implemented the intelligent smart monitor system for next generation which is most commonly viewed information in a vehicle from the instrument cluster, where speed, tachometer, fuel, engine temperature, fuel gauge, turn indicators and warning lights and provide the driver with an array of informations. Designed Smart HUD(Head-Up-Display) monitor system is composed TFT LCD, LCD Back light led, plane mirror, lens and controllers parts and it was assembled to intelligent integrated smart monitor system. Finally, we analyze intelligent integrated smart monitor system for driver safety vehicles and present the possibility to apply to smart intelligent HUD total monitor system for next generation.