• Title/Summary/Keyword: Intelligent Personalized System

Search Result 171, Processing Time 0.026 seconds

Design of knowledge search algorithm for PHR based personalized health information system (PHR 기반 개인 맞춤형 건강정보 탐사 알고리즘 설계)

  • SHIN, Moon-Sun
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.191-198
    • /
    • 2017
  • It is needed to support intelligent customized health information service for user convenience in PHR based Personal Health Care Service Platform. In this paper, we specify an ontology-based health data model for Personal Health Care Service Platform. We also design a knowledge search algorithm that can be used to figure out similar health record by applying machine learning and data mining techniques. Axis-based mining algorithm, which we proposed, can be performed based on axis-attributes in order to improve relevance of knowledge exploration and to provide efficient search time by reducing the size of candidate item set. And K-Nearest Neighbor algorithm is used to perform to do grouping users byaccording to the similarity of the user profile. These algorithms improves the efficiency of customized information exploration according to the user 's disease and health condition. It can be useful to apply the proposed algorithm to a process of inference in the Personal Health Care Service Platform and makes it possible to recommend customized health information to the user. It is useful for people to manage smart health care in aging society.

Dynamic Decision Making using Social Context based on Ontology (상황 온톨로지를 이용한 동적 의사결정시스템)

  • Kim, Hyun-Woo;Sohn, M.-Ye;Lee, Hyun-Jung
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.43-61
    • /
    • 2011
  • In this research, we propose a dynamic decision making using social context based on ontology. Dynamic adaptation is adopted for the high qualified decision making, which is defined as creation of proper information using contexts depending on decision maker's state of affairs in ubiquitous computing environment. Thereby, the context for the dynamic adaptation is classified as a static, dynamic and social context. Static context contains personal explicit information like demographic data. Dynamic context like weather or traffic information is provided by external information service provider. Finally, social context implies much more implicit knowledge such as social relationship than the other two-type context, but it is not easy to extract any implied tacit knowledge as well as generalized rules from the information. So, it was not easy for the social context to apply into dynamic adaptation. In this light, we tried the social context into the dynamic adaptation to generate context-appropriate personalized information. It is necessary to build modeling methodology to adopt dynamic adaptation using the context. The proposed context modeling used ontology and cases which are best to represent tacit and unstructured knowledge such as social context. Case-based reasoning and constraint satisfaction problem is applied into the dynamic decision making system for the dynamic adaption. Case-based reasoning is used case to represent the context including social, dynamic and static and to extract personalized knowledge from the personalized case-base. Constraint satisfaction problem is used when the selected case through the case-based reasoning needs dynamic adaptation, since it is usual to adapt the selected case because context can be changed timely according to environment status. The case-base reasoning adopts problem context for effective representation of static, dynamic and social context, which use a case structure with index and solution and problem ontology of decision maker. The case is stored in case-base as a repository of a decision maker's personal experience and knowledge. The constraint satisfaction problem use solution ontology which is extracted from collective intelligence which is generalized from solutions of decision makers. The solution ontology is retrieved to find proper solution depending on the decision maker's context when it is necessary. At the same time, dynamic adaptation is applied to adapt the selected case using solution ontology. The decision making process is comprised of following steps. First, whenever the system aware new context, the system converses the context into problem context ontology with case structure. Any context is defined by a case with a formal knowledge representation structure. Thereby, social context as implicit knowledge is also represented a formal form like a case. In addition, for the context modeling, ontology is also adopted. Second, we select a proper case as a decision making solution from decision maker's personal case-base. We convince that the selected case should be the best case depending on context related to decision maker's current status as well as decision maker's requirements. However, it is possible to change the environment and context around the decision maker and it is necessary to adapt the selected case. Third, if the selected case is not available or the decision maker doesn't satisfy according to the newly arrived context, then constraint satisfaction problem and solution ontology is applied to derive new solution for the decision maker. The constraint satisfaction problem uses to the previously selected case to adopt and solution ontology. The verification of the proposed methodology is processed by searching a meeting place according to the decision maker's requirements and context, the extracted solution shows the satisfaction depending on meeting purpose.

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.

A Structured Methodology with Device Collaboration Diagram for Evaluating Context-Aware Systems (장비협업도를 활용한 상황인식 시스템에 대한 구조적 평가 방법론)

  • Kwon, Oh-Byung;Lee, Nam-Yeon
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.2
    • /
    • pp.27-41
    • /
    • 2007
  • Nowadays the context-aware systems have been regarded as a promising opportunity to create differentiated e-marketplaces. Context-aware system aims to provide personalized services by understanding the user's current situation which is automatically acquired from the context data. This aim naturally leads us to a motivation to evaluate to what extent a system is context-aware. Even though lots of endeavors have stated about the level of context-aware system, a structured evaluation has been so far very rare. Hence, the purpose of this paper is to propose a two-phased methodology for assessing context-aware systems. In the first phase, we perform a requisite analysis to discriminate a context-aware system from general or context-based systems. Once an information system is recognized as context-aware system, then level of collaboration, mobility and embeddedness is derived to determine the level of context-aware system in the second phase. To do so, device collaboration diagram (DCD) is proposed to visualize the system architecture. Moreover, readiness and level of system are Jointly considered in the phase to provide a development strategy for each context-aware system development project. To show the feasibility of the idea proposed in this paper, legacy context-aware systems are actually analyzed and evaluated.

  • PDF

Evaluating the Quality of Recommendation System by Using Serendipity Measure (세렌디피티 지표를 이용한 추천시스템의 품질 평가)

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.89-103
    • /
    • 2019
  • Recently, various approaches to recommendation systems have been studied in terms of the quality of recommendation system. A recommender system basically aims to provide personalized recommendations to users for specific items. Most of these systems always recommend the most relevant items of users or items. Traditionally, the evaluation of recommender system quality has focused on the various predictive accuracy metrics of these. However, recommender system must be not only accurate but also useful to users. User satisfaction with recommender systems as an evaluation criterion of recommender system is related not only to how accurately the system recommends but also to how much it supports the user's decision making. In particular, highly serendipitous recommendation would help a user to find a surprising and interesting item. Serendipity in this study is defined as a measure of the extent to which the recommended items are both attractive and surprising to the users. Therefore, this paper proposes an application of serendipity measure to recommender systems to evaluate the performance of recommender systems in terms of recommendation system quality. In this study we define relevant or attractive unexpectedness as serendipity measure for assessing recommendation systems. That is, serendipity measure is evaluated as the measure indicating how the recommender system can find unexpected and useful items for users. Our experimental results show that highly serendipitous recommendation such as item-based collaborative filtering method has better performance than the other recommendations, i.e. user-based collaborative filtering method in terms of recommendation system quality.

Learning Material Bookmarking Service based on Collective Intelligence (집단지성 기반 학습자료 북마킹 서비스 시스템)

  • Jang, Jincheul;Jung, Sukhwan;Lee, Seulki;Jung, Chihoon;Yoon, Wan Chul;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.179-192
    • /
    • 2014
  • Keeping in line with the recent changes in the information technology environment, the online learning environment that supports multiple users' participation such as MOOC (Massive Open Online Courses) has become important. One of the largest professional associations in Information Technology, IEEE Computer Society, announced that "Supporting New Learning Styles" is a crucial trend in 2014. Popular MOOC services, CourseRa and edX, have continued to build active learning environment with a large number of lectures accessible anywhere using smart devices, and have been used by an increasing number of users. In addition, collaborative web services (e.g., blogs and Wikipedia) also support the creation of various user-uploaded learning materials, resulting in a vast amount of new lectures and learning materials being created every day in the online space. However, it is difficult for an online educational system to keep a learner' motivation as learning occurs remotely, with limited capability to share knowledge among the learners. Thus, it is essential to understand which materials are needed for each learner and how to motivate learners to actively participate in online learning system. To overcome these issues, leveraging the constructivism theory and collective intelligence, we have developed a social bookmarking system called WeStudy, which supports learning material sharing among the users and provides personalized learning material recommendations. Constructivism theory argues that knowledge is being constructed while learners interact with the world. Collective intelligence can be separated into two types: (1) collaborative collective intelligence, which can be built on the basis of direct collaboration among the participants (e.g., Wikipedia), and (2) integrative collective intelligence, which produces new forms of knowledge by combining independent and distributed information through highly advanced technologies and algorithms (e.g., Google PageRank, Recommender systems). Recommender system, one of the examples of integrative collective intelligence, is to utilize online activities of the users and recommend what users may be interested in. Our system included both collaborative collective intelligence functions and integrative collective intelligence functions. We analyzed well-known Web services based on collective intelligence such as Wikipedia, Slideshare, and Videolectures to identify main design factors that support collective intelligence. Based on this analysis, in addition to sharing online resources through social bookmarking, we selected three essential functions for our system: 1) multimodal visualization of learning materials through two forms (e.g., list and graph), 2) personalized recommendation of learning materials, and 3) explicit designation of learners of their interest. After developing web-based WeStudy system, we conducted usability testing through the heuristic evaluation method that included seven heuristic indices: features and functionality, cognitive page, navigation, search and filtering, control and feedback, forms, context and text. We recruited 10 experts who majored in Human Computer Interaction and worked in the same field, and requested both quantitative and qualitative evaluation of the system. The evaluation results show that, relative to the other functions evaluated, the list/graph page produced higher scores on all indices except for contexts & text. In case of contexts & text, learning material page produced the best score, compared with the other functions. In general, the explicit designation of learners of their interests, one of the distinctive functions, received lower scores on all usability indices because of its unfamiliar functionality to the users. In summary, the evaluation results show that our system has achieved high usability with good performance with some minor issues, which need to be fully addressed before the public release of the system to large-scale users. The study findings provide practical guidelines for the design and development of various systems that utilize collective intelligence.

Enhanced Recommendation Algorithm using Semantic Collaborative Filtering: E-commerce Portal (전자상거래 포탈을 위한 시맨틱 협업 필터링을 이용한 확장된 추천 알고리즘)

  • Ahmed, Shohel;Kim, Jong-Woo;Kang, Sang-Gil
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.79-98
    • /
    • 2011
  • This paper proposes a semantic recommendation technique for a personalized e-commerce portal. Semantic recommendation is achieved by utilizing the attributes of products. The semantic similarity of the products is merged with the rating information of the products to provide an accurate recommendation. The recommendation technique also analyzes various attitudes of the customer to evaluate the implicit rating of products. Attitudes are classifies into three types such as "purchasing product", "adding product to shopping cart", and "viewing the product information." We implicitly track customer attitude to estimate the rating of products for recommending products. Also we implement a session validation process to identify the valid sessions that are highly important for giving an accurate recommendation. Our recommendation technique shows a high degree of accuracy as we use age groupings of customers with similar preferences. The experimental section shows that our proposed recommendation method outperforms well known collaborative filtering methods not only for the existing customer, but also for the new user with no previous purchase record.

Future Promising Industries and Its Associated Ppuri-Technologies that will Change the World Expected by MOTIE R&D Program Directors(PD) (산업기술 R&D PD가 바라보는 미래 유망산업분야와 뿌리기술)

  • June, Younggun;Ahn, Hyungsu;Kim, Sungduk
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.147-152
    • /
    • 2013
  • In this paper, we surveyed the opinion of MOTIE(Ministry of Trade, Industry and Energy) R&D PDs about what are the future promising industries and their mainly associated Ppuri-technologies. According to the survey result, the future technology trends are to shift the technologies beyond their own critical performance and dominate human-centered technologies through converging technologies. In particular, the 4 industries, personalized medical technology, intelligent and emotional-based system, solar power technology and flexible technology, are expected to be good perspective industries in the near future. In order to grow these industries, we need to develop the core Ppuri-technologies that are very closely related to the future main industries. More than all, Ppuri-technology acts as a leverage for the future promising industry and is expected to be the strong supporter in manufacturing infra.

Game Elements Balancing using Deep Learning in Artificial Neural Network (딥러닝이 적용된 게임 밸런스에 관한 연구 게임 기획 방법론의 관점으로)

  • Jeon, Joonhyun
    • Journal of the HCI Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • Game balance settings are crucial to game design. Game balancing must take into account a large amount of numerical values, configuration data, and the relationship between elements. Once released and served, a game - even for a balanced game - often requires calibration according to the game player's preference. To achieve sustainability, game balance needs adjustment while allowing for small changes. In fact, from the producers' standpoint, game balance issue is a critical success factor in game production. Therefore, they often invest much time and capital in game design. However, if such a costly game cannot provide players with an appropriate level of difficulty, the game is more likely to fail. On the contrary, if the game successfully identifies the game players' propensity and performs self-balancing to provide appropriate difficulty levels, this will significantly reduce the likelihood of game failure, while at the same time increasing the lifecycle of the game. Accordingly, if a novel technology for game balancing is developed using artificial intelligence (AI) that offers personalized, intelligent, and customized service to individual game players, it would bring significant changes to the game production system.

  • PDF

Multi-perspective User Preference Learning in a Chatting Domain (인터넷 채팅 도메인에서의 감성정보를 이용한 타관점 사용자 선호도 학습 방법)

  • Shin, Wook-Hyun;Jeong, Yoon-Jae;Myaeng, Sung-Hyon;Han, Kyoung-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Learning user's preference is a key issue in intelligent system such as personalized service. The study on user preference model has adapted simple user preference model, which determines a set of preferred keywords or topic, and weights to each target. In this paper, we recommend multi-perspective user preference model that factors sentiment information in the model. Based on the topicality and sentimental information processed using natural language processing techniques, it learns a user's preference. To handle timc-variant nature of user preference, user preference is calculated by session, short-term and long term. User evaluation is used to validate the effect of user preference teaming and it shows 86.52%, 86.28%, 87.22% of accuracy for topic interest, keyword interest, and keyword favorableness.