Journal of the Korean Institute of Intelligent Systems
/
v.12
no.6
/
pp.531-536
/
2002
In this paper, we have applied Genetic Algorithms(GAs) to Intrusion Detection System(TDS), and then proposed and simulated the misuse detection model firstly. We have implemented with the KBD contest data, and tried to simulated in the same environment. In the experiment, the set of record is regarded as a chromosome, and GAs are used to produce the intrusion patterns. That is, the intrusion rules are generated. We have concentrated on the simulation and analysis of classification among the Data Mining techniques and then the intrusion patterns are produced. The generated rules are represented by intrusion data and classified between abnormal and normal users. The different rules are generated separately from three models "Time Based Traffic Model", "Host Based Traffic Model", and "Content Model". The proposed system has generated the update and adaptive rules automatically and continuously on the misuse detection method which is difficult to update the rule generation. The generated rules are experimented on 430M test data and almost 94.3% of detection rate is shown.3% of detection rate is shown.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.2
/
pp.148-153
/
2003
A DoS(Denial of Service) attack appears in the form of the intrusion attempt and Syn Flooding attack is a typical example. The Syn Flooding attack takes advantage of the weak point of 3-way handshake between the end-points of TCP which is the connection-oriented transmission service and has the reliability This paper proposes a NIIP(Network based Intelligent Intrusion Prevention) model. This model captures and analyzes the packet informations for the detection of Syn Flooding attack. Using the result of analysis of decision module, the decision module, which utilizes FCM(Fuzzy Cognitive Maps), measures the degree of danger of the DoS and trains the response module to deal with attacks. This model is a network based intelligent intrusion prevention model that reduces or prevents the danger of Syn Flooding attack.
This study investigates the application of data mining techniques such as artificial neural networks, rough sets, and induction teaming to the intrusion detection systems. To maximize the effectiveness of data mining for intrusion detection systems, we introduced the asymmetric costs with false positive errors and false negative errors. And we present a method for intrusion detection systems to utilize the asymmetric costs of errors in data mining. The results of our empirical experiment show our intrusion detection model provides high accuracy in intrusion detection. In addition the approach using the asymmetric costs of errors in rough sets and neural networks is effective according to the change of threshold value. We found the threshold has most important role of intrusion detection model for decreasing the costs, which result from false negative errors.
Security plays a vital role and is the key challenge in Mobile Ad-hoc Networks (MANET). Infrastructure-less nature of MANET makes it arduous to envisage the genre of topology. Due to its inexhaustible access, information disseminated by roaming nodes to other nodes is susceptible to many hazardous attacks. Intrusion Detection and Prevention System (IDPS) is undoubtedly a defense structure to address threats in MANET. Many IDPS methods have been developed to ascertain the exceptional behavior in these networks. Key issue in such IDPS is lack of fast self-organized learning engine that facilitates comprehensive situation awareness for optimum decision making. Proposed "Intelligent Behavioral Hybridized Intrusion Detection and Prevention System (IBH_IDPS)" is built with computational intelligence to detect complex multistage attacks making the system robust and reliable. The System comprises of an Intelligent Client Agent and a Smart Server empowered with fuzzy inference rule-based service engine to ensure confidentiality and integrity of network. Distributed Intelligent Client Agents incorporated with centralized Smart Server makes it capable of analyzing and categorizing unethical incidents appropriately through unsupervised learning mechanism. Experimental analysis proves the proposed model is highly attack resistant, reliable and secure on devices and shows promising gains with assured delivery ratio, low end-to-end delay compared to existing approach.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.109-113
/
2002
In this paper, we propose a new intrusion detection algorithm based on clustering: Kernel-ART, which is composed of the on-line clustering algorithm, ART (adaptive resonance theory), combining with mercer-kernel and concept vector. Kernel-ART is not only satisfying all desirable characteristics in the context of clustering-based 105 but also alleviating drawbacks associated with the supervised learning IDS. It is able to detect various types of intrusions in real-time by means of generating clusters incrementally.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.23-27
/
2002
본 논문에서는 정보보호에서 지능형 침입탐지시스템(Intrusion Detection System :IDS) 의한 모델을 제안한다. 이 모델은 데이터 마이닝 분야와 정보보호 분야의 결합된 방법을 이용한다. 즉, 계산환경을 격상하거나 새로운 공격 방법들 때문에 내장된 IDS를 보완 할 필요가 종종 있다. 현재 사용하고 있는 많은 IDS들은 전문적인 지식을 손으로 작성했기 때문에 IDS들의 변환은 가격이 매우 비싸며, 속도가 느리다는 단점이 있다. 이에 본 모델은 침입탐지 모델을 적응 적으로 구축하는데 데이터 마이닝 구조를 활용한다. 데이터 마이닝(Data Mining : DM)의 기술인 연관 규칙, 순차 패턴, 분류, 군집화, 유전자 알고리즘 기법(GA)인 Selection, Crossover, Mutation, Evaluation, Fitness Function의 기능을 접목하여 단점을 보안하고 처리 성능을 최대로 하는 즉, 보다 안전한 지능형 침입 탐지 시스템(IDS) 모델을 제안한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.243-248
/
2002
빠르게 변해 가는 정보화사회에서 침입 탐지 시스템은 정밀성과 적웅성, 그리고 확장성을 필요로 한다. 또한 복잡한 Network 환경에서 중요하고 기밀성이 유지되어야 할 리소스를 보호하기 위해, 더욱 구조적이고 지능적인 IDS(Intrusion Detection System)개발의 필요성이 요구되고 있다. 본 연구는 이를 위한, 지능적인 IDS를 위해 침입패턴을 생성하기 위한 모델을 도출함에 목적이 있다. 침입 패턴은 방대한 양의 데이터를 갖게 되고, 이를 정확하고 효율적으로 관리하기 위해서 데이터마이닝의 주요 2분야인 Link analysis와 Sequence analysis를 이용하여 정확하고 신뢰성 있는 침입규칙을 생성하기 위한 모델을 도출해낸다 이 모델은 "Time Based Traffic Model", "Host Based Traffic Model", "Content Model"로 각각 상이한 침입 패턴을 생성하게 된다. 이 모델을 이용하면 좀더 효율적이고 안정적으로 패턴을 생성 할 수 있다, 즉 지능형 시스템기반의 침입 탐지 모델을 구현할 수 있다. 이러한 모델로 생성한 규칙은 침입데이터를 대표하는 규칙이 되고, 이는 비정상 사용자와 정상 사용자를 분류하게 된다 모델에 사용된 데이터는 KDD컨테스트의 데이터를 이용하였다. 사용된 데이터는 KDD컨테스트의 데이터를 이용하였다.
The Transactions of the Korea Information Processing Society
/
v.6
no.12
/
pp.3622-3633
/
1999
Computer security is considered important due to tile side effect generated from the expansion of computer network and rapid increase of the use of computers. Intrusion Detection System(IDS) has been an active research area to reduce the risk from intruders. This paper discusses IDS of detecting anomaly behaviors and proposes a new intelligent IDS model, which consists of several computers with intelligent IDS, based on computer immune system. The intelligent IDSs are distributed and if any of distributed IDSs detect anomaly system call among system call sequences generated by a privilege process, the anomaly system call can be dynamically shared with other IDSs. This makes the intelligent IDSs improve the ability of immunity for new intruders.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.6
/
pp.2895-2921
/
2018
Security has become one of the major concerns in mobile adhoc networks (MANETs). Data and voice communication amongst roaming battlefield entities (such as platoon of soldiers, inter-battlefield tanks and military aircrafts) served by MANETs throw several challenges. It requires complex securing strategy to address threats such as unauthorized network access, man in the middle attacks, denial of service etc., to provide highly reliable communication amongst the nodes. Intrusion Detection and Prevention System (IDPS) undoubtedly is a crucial ingredient to address these threats. IDPS in MANET is managed by Command Control Communication and Intelligence (C3I) system. It consists of networked computers in the tactical battle area that facilitates comprehensive situation awareness by the commanders for timely and optimum decision-making. Key issue in such IDPS mechanism is lack of Smart Learning Engine. We propose a novel behavioral based "Smart Multi-Instance Multi-Label Intrusion Detection and Prevention System (MIML-IDPS)" that follows a distributed and centralized architecture to support a Robust C3I System. This protocol is deployed in a virtually clustered non-uniform network topology with dynamic election of several virtual head nodes acting as a client Intrusion Detection agent connected to a centralized server IDPS located at Command and Control Center. Distributed virtual client nodes serve as the intelligent decision processing unit and centralized IDPS server act as a Smart MIML decision making unit. Simulation and experimental analysis shows the proposed protocol exhibits computational intelligence with counter attacks, efficient memory utilization, classification accuracy and decision convergence in securing C3I System in a Tactical Battlefield environment.
Lee Hansung;Song Jiyoung;Kim Eunyoung;Lee Chulho;Park Daihee
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.3
/
pp.282-288
/
2005
In this paper, we propose a new intrusion detection model, which keeps advantages of existing misuse detection model and anomaly detection model and resolves their problems. This new intrusion detection system, named to MMIDS, was designed to satisfy all the following requirements : 1) Fast detection of new types of attack unknown to the system; 2) Provision of detail information about the detected types of attack; 3) cost-effective maintenance due to fast and efficient learning and update; 4) incrementality and scalability of system. The fast and efficient training and updating faculties of proposed novel multi-class SVM which is a core component of MMIDS provide cost-effective maintenance of intrusion detection system. According to the experimental results, our method can provide superior performance in separating similar patterns and detailed separation capability of MMIDS is relatively good.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.