• 제목/요약/키워드: Intelligent Equipment

검색결과 446건 처리시간 0.026초

차량용 가스스프링의 최적설계에 관한 연구 (A Study on the Optimal Design of Automotive Gas Spring)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.45-50
    • /
    • 2017
  • The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.

Information-based Smart Construction Management of High Rise Building Under the Complex Surrounding Environment in City Core Area

  • Liang, Haoqing;Li, Jian;Song, Weiqing
    • 국제초고층학회논문집
    • /
    • 제10권3호
    • /
    • pp.203-210
    • /
    • 2021
  • With the development of urbanization, the increasing of buildings density in urban core areas result in the complexity of construction environment. High-rise landmark building is always preferred in the construction of urban core areas. Super high-rise buildings construction are facing construction management difficulties due to the complex working conditions and enormous building system, especially with the complex surrounding environment of the urban core area, the construction management of super high-rise buildings in the area requires higher, refined and detailed standard. Based on a super high-rise project in a core area of Shanghai which has 370 m building height and 772,643 m2 building area, with complex surrounding environment, narrow construction site and many super-high-altitude crossing works. With the application of BIM technology, the Internet of Things, the LAN communication and other various intelligent mechanical equipment, information management systems, the efficiency and refinement of construction management are improved, ensuring the smooth implementation of the project while effectively controlling the impact on the surrounding environment.

Design of a MEMS sensor array for dam subsidence monitoring based on dual-sensor cooperative measurements

  • Tao, Tao;Yang, Jianfeng;Wei, Wei;Wozniak, Marcin;Scherer, Rafal;Damasevicius, Robertas
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3554-3570
    • /
    • 2021
  • With the rapid development of the Chinese water project, the safety monitoring of dams is urgently needed. Many drawbacks exist in dams, such as high monitoring costs, a limited equipment service life, long-term monitoring difficulties. MEMS sensors have the advantages of low cost, high precision, easy installation, and simplicity, so they have broad application prospects in engineering measurements. This paper designs intelligent monitoring based on the collaborative measurement of dual MEMS sensors. The system first determines the endpoint coordinates of the sensor array by the coordinate transformation relationship in the monitoring system and then obtains the dam settlement according to the endpoint coordinates. Next, this paper proposes a dual-MEMS sensor collaborative measurement algorithm that builds a mathematical model of the dual-sensor measurement. The monitoring system realizes mutual compensation between sensor measurement data by calculating the motion constraint matrix between the two sensors. Compared with the single-sensor measurement, the dual-sensor measurement algorithm is more accurate and can improve the reliability of long-term monitoring data. Finally, the experimental results show that the dam subsidence monitoring system proposed in this paper fully meets the engineering monitoring accuracy needs, and the dual-sensor collaborative measurement system is more stable than the single-sensor monitoring system.

차량 현가장치 성능향상을 위한 댐퍼 최적화 설계에 대한 연구 (A Study on the Optimization Design of Damper for the Improvement of Vehicle Suspension Performance)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.74-80
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of vehicle. It converting the kinetic energy of the shock into another form of energy, typically heat. In a vehicle, a damper reduce vibration of car, leading to improved ride comfort and running stability. Therefore, a damper is one of the most important components in a vehicle suspension system. Conventionally, the design process of vehicle suspensions has been based on trial and error approaches, where designers iteratively change the values of the design variables and reanalyze the system until acceptable design criteria are achieved. Therefore, the ability to tune a damper properly without trial and error is of great interest in suspension system design to reduce time and effort. For this reason, a many previous researches have been done on modeling and simulation of the damper. In this paper, we have conducted optimal design process to find optimal design parameters of damping force which minimize a acceleration of sprung mass for a given suspension system using genetic algorithm.

Structural evaluation of a foldable cable-strut structure for kinematic roofs

  • Cai, Jianguo;Zhang, Qian;Zhang, Yiqun;Lee, Daniel Sang-hoon;Feng, Jian
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.669-680
    • /
    • 2018
  • The rapidly decreasing natural resources and the global variation of the climate push us to find intelligent and efficient structural systems to provide more people with fewer resources. This paper proposed a kinematic cable-strut system to realize sustainable structures in responding to changing environmental conditions. At first, the concept of the kinematic system based on crystal-cell pyramid (CP) cable-strut unit was given. Then the deployment of the structure was studied experimentally. After that, the static behaviors in the fully deployed state under the symmetric and asymmetric load cases were investigated. Moreover, the effects of thermal loading and the initial prestress distribution were also discussed. Comparative studies between the proposed structure and other deployable cable-strut system under three times of design load cases were carried out. Finally, the robustness of the system was studied by removal of one passive cable at one time.

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.

LNG 벙커링용 비상차단 밸브 디스크 변위 제어에 관한 연구 (Disc Displacement Control of the Emergency Shut-Down Valve for LNG Bunkering)

  • 윤진호;박주연;장지성
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.28-34
    • /
    • 2021
  • Among the currently available types of fuel, LNG emits a relatively small amount of nitrogen oxide and carbon dioxide when it burns in the engine. However, since LNG is a flammable material, leakage during bunkering can lead to accidents, such as fires. Therefore, it is necessary to install a remote operation emergency shut-down (ESD) valve to block the flow and leakage of LNG in an emergency situation that occurs during bunkering. The ESD valve uses a hydraulic driving device consisting of a hydraulic control valve and a hydraulic motor to control globe valve disc displacement, which regulates the flow path for LNG transfer. At this time, there are various nonlinearities in hydraulic driving devices; hence, it is necessary to design a controller with robust control performance against these uncertainties. In this study, modeling of the ESD valve was carried out, and a sliding mode controller to control the displacement of the globe valve disc was designed. As a result, it was confirmed that the designed control performance could be achieved by overcoming nonlinearity characteristics using the designed controller.

Modified Deep Reinforcement Learning Agent for Dynamic Resource Placement in IoT Network Slicing

  • 로스세이하;담프로힘;김석훈
    • 인터넷정보학회논문지
    • /
    • 제23권5호
    • /
    • pp.17-23
    • /
    • 2022
  • Network slicing is a promising paradigm and significant evolution for adjusting the heterogeneous services based on different requirements by placing dynamic virtual network functions (VNF) forwarding graph (VNFFG) and orchestrating service function chaining (SFC) based on criticalities of Quality of Service (QoS) classes. In system architecture, software-defined networks (SDN), network functions virtualization (NFV), and edge computing are used to provide resourceful data view, configurable virtual resources, and control interfaces for developing the modified deep reinforcement learning agent (MDRL-A). In this paper, task requests, tolerable delays, and required resources are differentiated for input state observations to identify the non-critical/critical classes, since each user equipment can execute different QoS application services. We design intelligent slicing for handing the cross-domain resource with MDRL-A in solving network problems and eliminating resource usage. The agent interacts with controllers and orchestrators to manage the flow rule installation and physical resource allocation in NFV infrastructure (NFVI) with the proposed formulation of completion time and criticality criteria. Simulation is conducted in SDN/NFV environment and capturing the QoS performances between conventional and MDRL-A approaches.

Ship Motion-Based Prediction of Damage Locations Using Bidirectional Long Short-Term Memory

  • Son, Hye-young;Kim, Gi-yong;Kang, Hee-jin;Choi, Jin;Lee, Dong-kon;Shin, Sung-chul
    • 한국해양공학회지
    • /
    • 제36권5호
    • /
    • pp.295-302
    • /
    • 2022
  • The initial response to a marine accident can play a key role to minimize the accident. Therefore, various decision support systems have been developed using sensors, simulations, and active response equipment. In this study, we developed an algorithm to predict damage locations using ship motion data with bidirectional long short-term memory (BiLSTM), a type of recurrent neural network. To reflect the low frequency ship motion characteristics, 200 time-series data collected for 100 s were considered as input values. Heave, roll, and pitch were used as features for the prediction model. The F1-score of the BiLSTM model was 0.92; this was an improvement over the F1-score of 0.90 of a prior model. Furthermore, 53 of 75 locations of damage had an F1-score above 0.90. The model predicted the damage location with high accuracy, allowing for a quick initial response even if the ship did not have flood sensors. The model can be used as input data with high accuracy for a real-time progressive flooding simulator on board.

SHAP을 활용한 벌크선 메인엔진 연료 소모량 예측연구 (A Study on the Prediction of Fuel Consumption of Bulk Ship Main Engine Using Explainable Artificial Intelligence)

  • 김현주;박민규;이지환
    • 한국항해항만학회지
    • /
    • 제47권4호
    • /
    • pp.182-190
    • /
    • 2023
  • 본 연구에서는 벌크 선박의 연료 소비를 예측하기 위해 XGBoost와 SHapley Additive exPlanation (SHAP)을 사용하는 예측 모델을 제안한다. 기존 연구에서도 선박 엔진 데이터와 기상데이터를 활용하였지만 선박 연료소모량 예측 모델에 대한 예측 결과의 신뢰성과 예측 모델 구현에 사용된 변수들에 대한 설명이 부족한 한계가 있었다. 이러한 문제를 해결하기 위해 본 연구에서는 XGBoost와 SHAP를 사용하여 예측 모델을 개발하였다. 이 연구는 연구 배경, 범위, 관련 규정 및 이전 연구들, 그리고 연구 방법론에 대한 소개를 제공하며, 또한 벌크선 데이터 정제 방법과 예측 모델 결과의 검증을 설명한다.