• Title/Summary/Keyword: Intelligent Distribution

검색결과 553건 처리시간 0.031초

개원의의 대도시 개원 이유 : 대구시 개원의를 중심으로 (Medical Practitioners' Reasons for Practice in Great Gity(Taegu))

  • 감신;천병렬;박재용;예민해;송달효
    • 보건행정학회지
    • /
    • 제2권1호
    • /
    • pp.17-41
    • /
    • 1992
  • During the month of October, 1990, 676 practicing physicians in Taegu City were surveyed by mail questionnaires about their general characteristics and the reasons why they chose Taegu as a practice location and 331 out of them responded completely. Collected data were analyzed to provide basic reference data for future health manpower policy which intends to solve the problem of geographical maldistribution of physicians, The major findings are as follows: For the question asking why Taegu area is favored, following lists are as the order of their magnitude of the reasons replied by more than 20% of the respondents: 1) Taegu is a foundation of life until now(81.3%) 2) Better educational environments are available for their offsprings(73.7%) 3) They can have intimate relationship with acquaintances or friends sharing same or similar interests(61.0%) 4) Due to characteristics of their specialty, metropolitan seems to fit better(52.0%), 5) They graduated from the medical school in Taegu(49.8%) 6) Never thought of selecting practice location in other area than Taegu without any specific reasons(45.9%) 7) Intelligent communications are available with other physicians(39.9%) 8) More opportunities to participate in social life, such as medical, or alumni association etc., can be given(33.2%) 9) No specific knowledge or relationships with other area are available(32.6%) 10) They finished internship or residency training in Taegu area(31.4%) 11) Facilitation of transferring patients including emergent patients can be obtained (30.8%) 12) Continuing medical educational programs are available(29.9%) 13) Sufficient medical demands are provided because of the large population(28.1%) 14) More chances to be grown up as a medical professionals can be achieved(25.7%) 15) More leizure time can be utilized for cultural activities(23.9%) 16) They had experiences to work in hospitals or facilities in Taegu area(23.3%) 17) Medical facilities of fellow physicians or alumni can be used(20.5%) In addition, 37% of female physicians answered that their spouse strongly influenced them to choose Taegu, and 33.3% of physicians with age of thirty replied that parents did so. Physicians of specialty in radiology, clinical pathology, anatomical pathology, and anesthesiology considered that patients from other hospitals and medical facilities would be referred often to them and that less competition seemed to be expected in their specialty (30.8%). In contrast, general practitioners anticipated that larger population would increase the medical demand(62.5%). 28.6% of medical practitioners who graduated medical schools in other are than Taegu and 22.0% of medical practitioners who were trained in hospitals of other area than Taegu were influenced to choose Taegu by their spouses. In consideration of above findings, we may conclude that long term and rational manpower policies should be implemented to solve the problem of geographical maldistribution of physicians as well as short term physician-inducing policies, and they have to be incorporated with equitable community development.

  • PDF

소셜 네트워크와 데이터 마이닝 기법을 활용한 학문 분야 중심 및 융합 키워드 추천 서비스 (Recommending Core and Connecting Keywords of Research Area Using Social Network and Data Mining Techniques)

  • 조인동;김남규
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.127-138
    • /
    • 2011
  • 대부분의 연구포털 사이트는 관심 분야의 논문을 획득하고자 하는 연구자를 대상으로 한 서비스를 주로 제공하고 있다. 하지만 이러한 서비스는 정확한 서지사항을 알고 있는 일부 사용자의 경우 손쉽게 이용할 수 있지만, 대부분의 이용자는 원하는 자료를 획득하기 위해 키워드 검색을 통한 반복적 시행착오를 겪게 된다. 특히 사용자가 익숙하지 않은 분야의 논문을 검색하는 경우에는, 찾고자 하는 논문의 적절한 키워드 자체를 알지 못하여 검색에 큰 어려움을 겪게 된다. 이러한 한계를 극복하기 위해 일부 연구포털 사이트에서는 온라인 쇼핑몰의 상품 추천에 주로 사용되어온 연관관계 분석 기반 키워드 추천 서비스를 채택하고 있다. 하지만 연관관계 분석에만 기반한 키워드 추천 방식은 두 키워드간의 단편적인 관계만을 알려줄 뿐, 해당 학술 분야와 관련된 전체 키워드 간의 복합적 연결 관계를 보여주기에는 한계가 있다. 따라서 본 논문에서는 연관관계 분석을 통해 빈발 출현 키워드 쌍을 추출하고 이를 근거로 전체 키워드 간 네트워크를 구축함으로써, 학술 분야별 중심 키워드 및 분야 간 융합을 위한 연계 키워드를 추천하기 위한 방법을 제시하고자 한다.

AdaBoost 알고리즘기반 SVM을 이용한 부실 확률분포 기반의 기업신용평가 (Corporate Credit Rating based on Bankruptcy Probability Using AdaBoost Algorithm-based Support Vector Machine)

  • 신택수;홍태호
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.25-41
    • /
    • 2011
  • 최근 몇 년간 SVM(support vector machines)기법은 패턴인식 또는 분류의사결정문제를 위한 분석기법으로서 기존의 데이터마이닝 기법과 비교할 때, 매우 높은 성과를 갖는 것으로 인식되어 왔다. 더 나아나 많은 연구자들은 SVM기법이 1980년대 이후 대표적인 예측 및 분류모형으로 인정받은 인공신경망기법(ANNs : Artificial Neural Networks)에 비해 더 성과가 좋다는 사실을 실증적으로 입증해 왔다(Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al., 2005; Kim, 2003). 일반적으로 이와 같이 다양한 데이터마이닝 기법에 의해 분석되는 이진분류 또는 다분류 의사결정문제들은 특히 금융분야 등에 있어서 오분류비용에 민감하며, 이로 인한 오분류의 경제적 손실도 상대적으로 매우 크다고 할 수 있다. 따라서 기업부도예측모형과 같은 이진분류모형의 결과값을, 부도확률에 기초하여 정교하게 계산된 사후확률의 개념으로서 다분류의 신용등급평가의 문제로 변환할 필요가 있다. 그러나, SVM 모형의 결과값은 기본적으로 그와 같은 부도확률분포를 보여주지 않는다. 따라서, 그러한 확률분포를 정교하게 보여줄 방법을 제시할 필요가 있다(Platt, 1999; Drish, 2001). 본 연구는 AdaBoost 알고리즘기반의 SVM 모형을 이용하여, 이진분류모형으로서 IT 기업의 부실예측모형에 적용한 후, 이 SVM 모형의 예측결과를 SVM의 손실함수에 적용하여 계산된 값을 사후부도확률의 정규분포 특성에 따라 이를 구간화하여 IT기업에 대한 다분류 신용등급 평가의 문제로 전환시키는 방법을 제시하였다. 그리고 본 연구에서 제안하는 방법은 이러한 AdaBoost 알고리즘기반 SVM 모형이 각 기업이 고유한 신용위험(부도확률)을 갖고 있다는 조건하에서, 신용등급부여를 위한 부도확률분포 구간을 정교하게 조정함으로써 오분류 문제를 좀 더 줄일 수 있음을 제시하였다.

해석수준과 메시지 프레이밍에 따른 자율주행택시의 사용의도에 관한 연구 (A Study on the Construal Level and Intention of Autonomous Driving Taxi According to Message Framing)

  • 윤승정;김민용
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.135-155
    • /
    • 2018
  • 본 연구는 최근 4차산업 혁명의 산물로 대두되고 있는 자율주행차가 대중교통 수단인 택시로 이용될 때 해석수준과 메시지 프레이밍에 따른 사용 의도의 차이를 분석하는 것이다. 해석수준이란 가까운 미래에 발생한 일과 먼 미래에 발생할 일을 가정하여 어떤 제품이나 서비스를 해석하는 것이 다르다는 것을 말한다. 메시지 프레이밍이란 긍정 혹은 부정의 표현 또는 혜택, 손실의 양극단의 메시지를 구성한 것을 말한다. 즉, 기존연구에서는 이 두 개념에 따라 제품이나 서비스의 가치를 다르게 해석한다고 한다. 본 연구는 자율주행차가 택시로 출시될 때 두 개념을 적용할 경우 사용 의도의 차이를 보이는지 살펴보고자 한다. 결과를 요약하면 우선, 메시지 프레이밍 구성에서 자율주행 택시를 이용할 경우 혜택(Gain)과 왜(Why) 사용해야 하는지를 설명한 메시지 형식과 자율주행 택시를 이용하지 않았을 경우 손실(Loss)와 어떻게(How)를 강조한 메시지를 구성하여 비교해 보았다. 두 메시지 프레이밍은 차이를 보였으며(t= 3.063) 혜택(Gain)과 왜(Why)를 설명한 메시지 형태가 더 높은 사용 의도를 보였다. 또한, 해석수준에 따른 결과를 요약하면 다음과 같다. 혜택(Gain) 및 손실(Loss)에 대한 먼 미래와 가까운 미래에 발생할 것을 가정한 경우 사용 의도에 차이가 있었으며, 구체적으로 혜택(Gain)을 설명한 메시지와 먼 미래에 발생할 것을 가정한 경우가 사용 의도가 높았다. 요약하면 자율주행 택시의 사용 의도를 높이기 위해서는 긍정의 메시지(Gain)와 먼 미래에 일어날 수 있는 것을 가정하여 사람들에게 메시지를 전달해야 한다는 결론이다. 또한, 본 연구를 통하여 향후 신기술의 출현에 대한 사용 의도 연구 시 연구방법을 활용할 수 있을 것이다.

RSS와 OLAP 큐브를 이용한 FOAF의 동적 관리 기법 (A Dynamic Management Method for FOAF Using RSS and OLAP cube)

  • 손종수;정인정
    • 지능정보연구
    • /
    • 제17권2호
    • /
    • pp.39-60
    • /
    • 2011
  • 웹 2.0 기술이 소개된 이후 소셜 네트워크 서비스는 미래 정보기술의 기초로서 중요하게 인식되고 있다. 이에, 웹2.0 환경에서 소셜 네트워크를 구축하기 위하여 온톨로지 기반의 사용자 프로필 기술 도구인 FOAF를 활용하기 위한 다양한 연구가 이뤄지고 있다. 그러나 FOAF를 이용하여 소셜 네트워크를 생성 및 관리하는 대부분의 방법은 시간의 흐름에 따라 변화하는 사용자의 소셜 네트워크를 자동적으로 반영하기 어려운 단점이 있으며 다양한 소셜 미디어 서비스가 제공되는 환경에서는 FOAF를 동적으로 관리하기가 쉽지 않다. 따라서 본 논문에서는 기존 FOAF를 이용한 소셜 네트워크 추출방법의 한계를 극복하기 위하여 사용자 프로파일 기술 언어인 FOAF와 웹 저작물 출판 매커니즘인 RSS를 OLAP 시스템에 적용시켜 동적으로 FOAF를 갱신하고 관리하기 위한 방법을 제안한다. 본 논문에서 제안하는 방법은 수집한 FOAF와 RSS 파일들을 스타스키마로 설계된 데이터베이스에 넣어 OLAP 큐브를 생성한다. 그리고 OLAP 연산을 이용하여 사용자의 연결관계를 분석하고 FOAF에 그 결과를 반영한다. 본 논문에서 제안하는 방법은 이기종 분산처리 환경 하에서 데이터의 상호호환성을 보장할 뿐만 아니라 시간의 흐름에 따른 사용자의 관심 및 이슈 등의 변화를 효과적으로 반영한다.

베이지안 확률 기반 범죄위험지역 예측 모델 개발 (Crime Incident Prediction Model based on Bayesian Probability)

  • 허선영;김주영;문태헌
    • 한국지리정보학회지
    • /
    • 제20권4호
    • /
    • pp.89-101
    • /
    • 2017
  • 범죄는 장소나 건축물 용도에 따라 발생빈도와 유형이 다르고, 그 장소를 이용하는 사람들의 특성 및 공간 구조 차이에 의해 다양하게 발생한다. 따라서 공간 및 지역특성을 포함한 공간 빅데이터를 활용하여 지역을 분석해 보면 범죄예방 전략을 마련할 수 있다. 아울러 빅데이터와 지능 정보화시대의 도래에 따라 예측적 경찰활동이 새로운 경찰활동의 패러다임으로 등장하고 있다. 이에 보편적인 지방도시 J시를 대상으로 3개년 동안의 7,420건의 실제 범죄사례를 바탕으로 도시공간의 물리 환경적인 특성을 분석하여 범죄발생공간을 규명하고, 위험지역을 예측해 보고자 하였다. 분석에는 다양한 빅데이터 중 범죄를 유발하는 도시 공간 내 물리 환경적 요소에 한하여 공간 빅데이터를 구축하여 공간회귀분석을 실시하였다. 다음으로 분석결과 도출된 가로폭, 평균 층수, 용적율, 1층 사용용도(제2종 근린생활시설, 상업시설, 유흥시설, 주거시설)을 변수로 베이지안확률 기반 범죄발생 위험성 예측 모형(CIPM: Crime Incident Prediction Model)을 개발하였다. 개발된 모델은 실제 범죄발생 지역과의 중첩분석 및 모델의 정확도를 판단하는 Roc curve 분석을 통해 AUC 값이 0.8로 모델이 적합한 것으로 나타났다. 개발된 모델을 토대로 사례지역의 범죄 위험도를 분석한 결과 범죄발생은 상업 및 유흥시설이 밀집된 지역과 건물층수가 높은 지역, 그리고 상업 및 유흥시설과 주거가 혼재해 있는 블록이 범죄발생 확률이 높은 것으로 나타났다. 본 연구는 단순히 범죄의 공간적 분포와 범죄발생 영향요인을 탐색하는 기존의 연구와 달리 범죄발생 예측모델을 확률론적 관점에서 개발하는 영역으로 한 단계 진전되었다는 점에 의의가 있다.

정보기술 산업에서의 인수 유형별 인수 의도 분석 (Intents of Acquisitions in Information Technology Industrie)

  • 조우제;장영봉;권영옥
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.123-138
    • /
    • 2016
  • 전 세계적으로 기업의 중요한 전략적 수단으로 인수합병이 활발히 이루어지고 있고, 지능형 서비스 산업을 포함한 정보기술 산업에서의 인수합병 활동은 꾸준히 활발하게 진행되고 있다. 본 논문에서는 정보기술 산업 내에서 일어나는 인수합병 건에 대해 인수 기업 입장에서의 인수 의도에 초점을 두고 분석하였다. 특히, 두 하드웨어 기업 간, 하드웨어 기업 소프트웨어 기업 간, 두 소프트웨어 기업 간 인수합병 유형에 따라 인수 의도가 어떻게 다른지 비교하고자 하였고, 이를 위해 미국 정보기술 산업 내에서 1995년과 2010년 사이에 일어났던 1003개의 인수합병 건의 자료를 분석하였다. 인수 의도를 파악하는데 있어, 인수 기업의 입장에서 생산비용 절감 의도, 제품 개발 및 개선 의도, 고객층 확장 의도, 고객채널 확장 의도의 네 가지로 구분하여 측정하였다. 분석 결과 생산비용 절감 의도와 고객층 확장 의도는 하드웨어 기업이 피인수 기업일 때 더 많이 나타났고, 제품개발 의도는 하드웨어 기업이 인수 기업일 때 더 많이 나타났다. 그리고, 고객채널 확장 의도는 소프트웨어 기업이 피인수 기업일 때 더 많이 나타났다. 또한, 생산비용 절감 의도, 제품 개발 및 개선 의도를 제품생산 관련활동 의도로, 고객층 확장 의도와 고객채널 확장을 고객관련 활동 의도로 구분하여 비교하였을 때에는, 하드웨어 기업 간 인수합병에 비해, 두 소프트웨어 기업 간 인수합병에서 상대적으로 고객관련 활동 의도가 높은 비중을 나타내고 있음을 알 수 있었다. 활발하게 인수합병이 이루어지고 있는 세계적 추세와는 달리 국내 인수합병거래 규모는 선진국에 비해 매우 적은 수준이다. 본 연구는 인수합병이 보다 활발하게 이루어지고 있는 미국기술정보 산업에서의 인수 의도를 분석하여, 국내에서 인수합병 활동을 활성화하는 방안을 분석 및 개발하는데 기여하고자 한다.

영역별 맞춤형 감성사전 구축을 통한 영화리뷰 감성분석 (Sentiment analysis on movie review through building modified sentiment dictionary by movie genre)

  • 이상훈;최정;김종우
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.97-113
    • /
    • 2016
  • 인터넷상의 데이터가 급속하게 증가함에 따라 막대한 양의 데이터를 목적에 맞게 적절히 활용하는 빅데이터 분석이 활발하게 진행되고 있다. 최근에는 기존의 정형 데이터분석이 가진 한계점을 보완하는 방법으로 비정형 데이터 분석 분야 중 하나인 텍스트마이닝 기법에 대한 연구들이 다수 이루어지고 있으며, 특히 텍스트를 기반으로 문장의 긍정, 부정을 판별하고 분류하는 감성분석과 관련된 연구들이 활발하게 이루어지고 있다. 이러한 연구의 연장선 상에서, 본 연구는 감성분석에 사용되는 감성사전을 데이터의 특성에 맞게 적절하게 변형하여 구축하는 방법을 시도하였다. 데이터가 속한 영역의 특성을 고려하지 않은 기존의 범용 감성사전을 감성분석에 사용할 경우, 해당 영역에서 쓰이는 단어 또는 감정 표현을 반영하지 못하므로 감성분석의 정확성이 떨어질 수 있다. 따라서 감성분석에 있어서 영역 맞춤형 감성사전의 사용 시 데이터 영역의 특성을 정확하게 반영해 분석의 정확성을 높여줄 것으로 기대할 수 있다. 본 연구에서는 영화 리뷰 데이터를 분석 대상으로 선정하였으며, 대표적 영화정보 사이트 IMDb에서 발생된 약 2년간의 영화리뷰 데이터를 수집 분석하였다. 분석에 앞서 영화 장르별 사용되는 단어의 의미가 각각 다를 것을 고려하여 영화를 '액션', '애니메이션', '코메디', '드라마', '공포', '과학공상' 6개 장르로 분류했다. 맞춤형 감성사전 구축을 위한 핵심 기법으로 SO-PMI(Semantic Orientation from Point-wise Mutual Information)를 활용하였으며, 어휘 간 극성이 뚜렷하게 구분되는 형용사에 한정하여 연구를 진행했다. 분석결과 맞춤형사전을 활용한 감성분석 예측정확도는 영화 장르별로 상이했다. '애니메이션'을 제외한 5개 장르에서 기존의 범용 감성사전대비 맞춤형 감성사전의 예측정확도가 통계적으로 유의한 수준의 성능 향상을 보였다. 본 연구에서는 데이터 영역의 특성에 맞는 맞춤형 사전 구축을 통한 감성분석의 예측의 성능 향상을 확인하였다. 향후 감성사전 구축 시 동사, 부사 등 다양한 품사의 어휘를 추가하여 감성분석 예측정확도를 높이는 방안을 모색할 수 있을 것이다.

텍스트 마이닝을 이용한 공군 부사관 지원자 자기소개서의 차별적 특성 분석 (Analyzing the discriminative characteristic of cover letters using text mining focused on Air Force applicants)

  • 권혁;김우주
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.75-94
    • /
    • 2021
  • 저출산 문제로 인한 병역자원 감소와 병 복무기간 단축에 따른 군 간부 대비 병 복무 선호 현상은 우수한 군 간부확보정책에 대한 추가적인 고찰을 필요로 한다. 이와 관련된 연구들은 대부분 사회과학에서 주로 사용되는 방법론으로 분석하였으나, 본 연구는 대량의 문헌조사에 적합한 텍스트 마이닝의 방법론으로 접근한다. 이를 위해, 본 연구는 공군 부사관 지원자 자기소개서에서 차별적인 특성의 단어들을 추출하고 합격 및 불합격의 극성을 분석한다. 본 연구는 총 3단계로 이루어졌다. 첫번째, 지원분야를 일반분야와 기술분야로 나누고, 자기소개서에서 특성을 가지는 단어들을 분야별 빈도수 비율의 차이대로 순서화 한다. 각 지원분야별 비율의 차이가 클수록 해당 지원분야의 특성을 나타내는 것으로 정의하였다. 두번째, 이 특성을 나타내는 단어들을 LDA를 통해 단어들의 Topic을 군집화하고 이를 바탕으로 Label을 정의하였다. 세번째, 이 군집화 된 지원분야별 단어들을 L-LDA를 통해 합격과 불합격의 극성을 분석하였다. L-LDA값의 차이가 합격에 가까울수록 합격자들이 많이 사용하는 단어로 정의하였다. 본 연구를 통해, 공군 부사관 자기소개서의 차별적 특성을 추출하기에는 LDA보다 L-LDA가 더 적합함을 알 수 있다. 또한, 이러한 방법론은 별도의 서면 또는 대면 설문 방식이 아니라, 대량 문서에 대한 텍스트 마이닝 기법을 적용하여 분석시간을 단축하고, 전체 모집단에 대한 신뢰성을 높일 수 있다. 따라서 본 연구인 공군 부사관 선발결과 분석을 통해, 선발제도 및 홍보제도에 활용 가능한 정보를 제공하고, 군 인력획득 분야 연구에 있어 활용 가능한 방법론을 제안하고자 한다.

Conditional Generative Adversarial Network(CGAN) 기반 협업 필터링 추천 시스템 (Conditional Generative Adversarial Network based Collaborative Filtering Recommendation System)

  • 강소이;신경식
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.157-173
    • /
    • 2021
  • 소비자의 욕구와 관심에 맞추어 개인화된 제품을 추천하는 추천 시스템은 비즈니스에 필수적인 기술로서의 그 중요성이 증가하고 있다. 추천 시스템의 대표적인 모형 중 협업 필터링은 우수한 성능으로 다양한 분야에서 활용되고 있다. 그러나 협업필터링은 사용자-아이템의 선호도 정보가 충분하지 않을 경우 성능이 저하되는 희소성의 문제가 있다. 또한 실제 평점 데이터의 경우 대부분 높은 점수에 데이터가 편향되어 있어 심한 불균형을 갖는다. 불균형 데이터에 협업 필터링을 적용할 경우 편향된 클래스에 과도하게 학습되어 추천 성능이 저하된다. 이러한 문제를 해결하기 위해 많은 선행연구들이 진행되어 왔지만 추가적인 외부 데이터 또는 기존의 전통적인 오버샘플링 기법에 의존한 추천을 시도하였기에 유용성이 떨어지고 추천 성능 측면에서 한계점이 있었다. 본 연구에서는 CGAN을 기반으로 협업 필터링 구현 시 발생하는 희소성 문제를 해결함과 동시에 실제 데이터에서 발생하는 데이터 불균형을 완화하여 추천의 성능을 높이는 것을 목표로 한다. CGAN을 이용하여 비어있는 사용자-아이템 매트릭스에 실제와 흡사한 가상의 데이터를 생성하여, 희소성을 가지고 있는 기존의 매트릭스로만 학습한 것과 비교했을 때 높은 정확도가 예상된다. 이 과정에서 Condition vector y를 이용하여 소수 클래스에 대한 분포를 파악하고 그 특징을 반영하여 데이터를 생성하였다. 이후 협업 필터링을 적용하고, 하이퍼파라미터 튜닝을 통해 추천 시스템의 성능을 최대화하는데 기여하였다. 비교 대상으로는 전통적인 오버샘플링 기법인 SMOTE, BorderlineSMOTE, SVM-SMOTE, ADASYN와 GAN을 사용하였다. 결과적으로 데이터 희소성을 가지고 있는 기존의 실제 데이터뿐만 아니라 기존 오버샘플링 기법들보다 제안 모형의 추천 성능이 우수함을 확인하였으며, RMSE, MAE 평가 척도에서 가장 높은 예측 정확도를 나타낸다는 사실을 증명하였다.