• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.026 seconds

Development of Artificial Intelligence Model for Outlet Temperature of Vaporizer (기화 설비의 토출 온도 예측을 위한 인공지능 모델 개발)

  • Lee, Sang-Hyun;Cho, Gi-Jung;Shin, Jong-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.85-92
    • /
    • 2021
  • Ambient Air Vaporizer (AAV) is an essential facility in the process of generating natural gas that uses air in the atmosphere as a medium for heat exchange to vaporize liquid natural gas into gas-state gas. AAV is more economical and eco-friendly in that it uses less energy compared to the previously used Submerged vaporizer (SMV) and Open-rack vaporizer (ORV). However, AAV is not often applied to actual processes because it is heavily affected by external environments such as atmospheric temperature and humidity. With insufficient operational experience and facility operations that rely on the intuition of the operator, the actual operation of AAV is very inefficient. To address these challenges, this paper proposes an artificial intelligence-based model that can intelligent AAV operations based on operational big data. The proposed artificial intelligence model is used deep neural networks, and the superiority of the artificial intelligence model is verified through multiple regression analysis and comparison. In this paper, the proposed model simulates based on data collected from real-world processes and compared to existing data, showing a 48.8% decrease in power usage compared to previous data. The techniques proposed in this paper can be used to improve the energy efficiency of the current natural gas generation process, and can be applied to other processes in the future.

Deep Learning Based User Safety Profiling Using User Feature Information Modeling (딥러닝 기반 사용자 특징 정보 모델링을 통한 사용자 안전 프로파일링)

  • Kim, Kye-Kyung
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.143-150
    • /
    • 2021
  • There is a need for an artificial intelligent technology that can reduce various types of safety accidents by analyzing the risk factors that cause safety accidents in industrial site. In this paper, user safety profiling methods are proposed that can prevent safety accidents in advance by specifying and modeling user information data related to safety accidents. User information data is classified into normal and abnormal conditions through deep learning based artificial intelligence analysis. As a result of verifying user safety profiling technology using more than 10 types of industrial field data, 93.6% of user safety profiling accuracy was obtained.

Development of a Novel Integrated Evaluation Index for Freeway Traffic Data (고속도로 교통자료 품질 통합평가지표 개발)

  • PARK, Hyunjin;YOON, Mijung;KIM, Hae;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.417-429
    • /
    • 2015
  • Evaluation of traffic data quality is a backbone of better traffic information and management systems because it directly affects the reliability of traffic information. This study developed an integrated index for evaluating the quality of archived intelligent transportation systems (ITS) data. Two novel indices including spatio-temporal consistency and severity of missing data were devised and integrated with existing indices such as availability and completeness. An evaluation framework was proposed based on the developed integrated index. Both analytical hierarchical analysis (AHP) technique and entropy method were adopted to derive mixed weighting values to be used for the integrated index. It is expected that the proposed methodology would be effectively used in enhancing the quality of traffic data as a part of traffic information system.

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.

Development of Legibility Distance Model for VMS Messages using In-Vehicle DGPS Data (DGPS를 이용한 VMS 메시지 판독거리 모형개발)

  • O, Cheol;Kim, Won-Gi;Lee, Su-Beom;Lee, Cheong-Won;Kim, Jeong-Wan
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.23-32
    • /
    • 2007
  • Variable message sign (VMS), which is used for providing real-time information on traffic conditions and incidents, is one of the important components of intelligent transportation systems. VMS messages need to meet the requirements with the consideration of human factors that messages should be readable and understandable while driving. This study developed a legibility distance model for VMS messages using in-vehicle differential global positioning data (DGPS). Traffic conditions, highway geometric conditions, and VMS message characteristics were investigated for establishing the legibility model based on multiple linear regression analysis. The height of VMS characters, speed, and the number of lanes were identified as dominant factors affecting the variation of legibility distances. It is expected that the proposed model would play a significant role in designing VMS messages for providing more effective real-time traffic information.

Analysis of Image Factors of X-ray Films: Study for the Intelligent Replenishment System of Automatic Film Processor (자동현상기 지능화에 필요한 연산처리 기법의 개발을 위한 방사선 필름의 영상 지수의 분석)

  • Park, Sung-Tae;Yoon, Chong-Hyun;Park, Kwang-Bo;Auh, Yong-Ho;Lee, Hyoung-Jin;In, Kyung-Hwan;Kim, Keon-Chung
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.35-39
    • /
    • 1998
  • We analyzed image factors to determine the characteristic factors that need for intelligent replenishment system of the auto film processor. We processed the serial 300 sheets of radiographic films of chest phantom without replenishment of developing and fixation replenisher. We took the digital data by using film digitizer which scaned the films and automatically summed up the pixel values of the films. We analyzed characteristic curves, average gradients and relative speeds of individual film using densitometer and step densitometry. We also evaluated the pH of developer, fixer, and washer fluid with digital pH meter. Fixer residual rate and washing effect were measured by densitometer using the reagent methods. There was no significant reduction of the digital density numbers of the serial films without replenishment of developer and fixer. The average gradients were gradually decreased by 0.02 and relative speeds were also gradually decreased by 6.96% relative to initial standard step-densitometric measurement. The pHs of developer and fixer were reflected the inactivation of each fluid. The fixer residual rates and washing effects after processing each 25 sheets of films were in the normal range. We suggest that the digital data are not reliable due to limitation of the hardware and software of the film digitizer. We conclude that average gradient and relative speed which mean the film's contrast and sensitivity respectively are reliable factors for determining the need for the replenishment of the auto film processor. We need more study of simpler equations and programming for more intelligent replenishment system of the auto film processor.

  • PDF

A Study on Building Knowledge Base for Intelligent Battlefield Awareness Service

  • Jo, Se-Hyeon;Kim, Hack-Jun;Jin, So-Yeon;Lee, Woo-Sin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.11-17
    • /
    • 2020
  • In this paper, we propose a method to build a knowledge base based on natural language processing for intelligent battlefield awareness service. The current command and control system manages and utilizes the collected battlefield information and tactical data at a basic level such as registration, storage, and sharing, and information fusion and situation analysis by an analyst is performed. This is an analyst's temporal constraints and cognitive limitations, and generally only one interpretation is drawn, and biased thinking can be reflected. Therefore, it is essential to aware the battlefield situation of the command and control system and to establish the intellignet decision support system. To do this, it is necessary to build a knowledge base specialized in the command and control system and develop intelligent battlefield awareness services based on it. In this paper, among the entity names suggested in the exobrain corpus, which is the private data, the top 250 types of meaningful names were applied and the weapon system entity type was additionally identified to properly represent battlefield information. Based on this, we proposed a way to build a battlefield-aware knowledge base through mention extraction, cross-reference resolution, and relationship extraction.

Life Satisfaction Depending on Digital Utilization Divide within People with Disabilities (스마트 도시(Smart City)의 데이터 경제 구현을 위한 개인정보보호 적용설계(PbD)의 도입 필요성 분석)

  • Jin, Sang-Ki
    • Informatization Policy
    • /
    • v.26 no.3
    • /
    • pp.69-89
    • /
    • 2019
  • In order to implement smart cities that will become living spaces in the fourth industrial revolution era, detailed privacy information such as residents' living information, buildings and facilities information must be collected and processed in real time. While city functions and convenience for individuals are being facilitated, threats to personal information exposure and leakage are also likely to increase at the same time. Therefore, the design concept for personal information protection should be considered and accordingly reflected from the stages of smart city design, technology development and operation planning of intelligent information (AI) facilities. The results of the analysis show that for activation of smart cities and operation of data-driven cities, the concept of Privacy by Design (PbD) has already been introduced in the institutional, industrial and technological aspects, particularly in the cases of European countries and the US. In order to strengthen the local and global competitiveness of smart cities and the country, Korea also needs to actively deploy PbD as a strategy to secure a data-driven economy, which is the core strategy for smart cities. Therefore, the study suggests policy implications focused on approaches to legislative improvement and technology development support, which reflect the basic properties of PbD as defined in the study.

COVID-19-related Korean Fake News Detection Using Occurrence Frequencies of Parts of Speech (품사별 출현 빈도를 활용한 코로나19 관련 한국어 가짜뉴스 탐지)

  • Jihyeok Kim;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.267-283
    • /
    • 2023
  • The COVID-19 pandemic, which began in December 2019 and continues to this day, has left the public needing information to help them cope with the pandemic. However, COVID-19-related fake news on social media seriously threatens the public's health. In particular, if fake news related to COVID-19 is massively spread with similar content, the time required for verification to determine whether it is genuine or fake will be prolonged, posing a severe threat to our society. In response, academics have been actively researching intelligent models that can quickly detect COVID-19-related fake news. Still, the data used in most of the existing studies are in English, and studies on Korean fake news detection are scarce. In this study, we collect data on COVID-19-related fake news written in Korean that is spread on social media and propose an intelligent fake news detection model using it. The proposed model utilizes the frequency information of parts of speech, one of the linguistic characteristics, to improve the prediction performance of the fake news detection model based on Doc2Vec, a document embedding technique mainly used in prior studies. The empirical analysis shows that the proposed model can more accurately identify Korean COVID-19-related fake news by increasing the recall and F1 score compared to the comparison model.

A Path-Based Traffic Assignment Model for Integrated Mass Transit System (통합 대중교통망에서의 경로기반 통행배정 모형)

  • Shin, Seong-Il;Jung, Hee-Don;Lee, Chang-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.3
    • /
    • pp.1-11
    • /
    • 2007
  • Seoul's transportation system was changed drastically starting the first of June in two thousand. This policy includes integrated distance-based fare system and public transportation card system called smart card. Especially, as public transportation card data contains individual travel, transfer and using modes information it is possible to catch the characteristics of path-based individuals and mass transit. Thus, public transportation card data can contribute to evaluate the mass transit service in integrated public transportation networks. In addition, public transportation card data are able to help to convert previous researches and analyses with link-based trip assignment models to path-based mass transit service analysis. In this study, an algorithm being suitable for path-based trip assignment models is suggested and proposed algorithm can also contribute to make full use of public transportation card data. For this, column generation algorithm hewn to draw the stable solution is adopted. This paper uses the methodology that is to take local approximate equilibrium from partial network and expand local approximate equilibrium to global equilibrium.

  • PDF