• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.028 seconds

A Study on the Ship Information Fusion with AIS and ARPA Radar using by Blackboard System (블랙보드 시스템을 이용한 AIS와 ARPA Radar의 선박 정보 융합에 대한 연구)

  • Kim, Do-Yeon;Park, Gyei-Kark;Kim, Hwa-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • In recent, the maritime traffic has increased with an increase in international trading volumes and the growing popularity of marine leisure activities. As increasing of maritime traffic, marine accidents happened continually and there are possibilities of accidents at sea. According to the analysis of marine accidents, most accidents occurred by human error of seafarers. To reduce the accidents by human error, the various assistance system for assist seafarers have been proposed. It is required to real-time data management method for applying to real-time system, but most proposed assistance system used off-line data for analysis. In this paper, we aim to build a navigation supporting system for providing safety information to deck officer with data of AIS(Automatic Identification System) and ARPA Radar(Automatic Radar Plotting Aids Radar), and proposed a management algorithm for real-time ship information with blackboard system and verified the validity.

Analysis of Spatial Trip Regularity using Trajectory Data in Urban Areas (도시부 경로자료를 이용한 통행의 공간적 규칙성 분석)

  • Lee, Su jin;Jang, Ki tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.96-110
    • /
    • 2018
  • As the development of ICT has made it easier to collect various traffic information, research on creating new traffic attributes is drawing attention. Estimation and forecasts of demand and traffic volume are one of the main indicators that are essential to traffic operation, assuming that the traffic pattern at a particular node or link is repeated. Traditionally, a survey method was used to demonstrate this similarity on trip behavior. However, the method was limited to achieving high accuracy with high costs and responses that relied on the respondents' memory. Recently, as traffic data has become easier to gather through ETC system, smart card, studies are performed to identify the regularity of trip in various ways. In, this study, route-level trip data collected in Daegu metropolitan city were analyzed to confirm that individual traveler forms a spatially similar trip chain over several days. For this purpose, we newly define the concept of spatial trip regularity and assess the spatial difference between daily trip chains using the sequence alignment algorithm, Dynamic Time Warping. In addition, we will discuss the applications as the indicators of fixed traffic demand and transportation services.

An Investigation of Rider Behavior to Transfer Seoul Metropolitan Transit Using Public Transport Card Data (교통카드 데이터를 이용한 수도권 광역급행철도 환승행태에 관한 연구)

  • Gun ki Jung;Dong min Lee;Sun hoon Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.146-164
    • /
    • 2022
  • Recently, the Korean government promoted the construction of metropolitan express subway to connect major transportation hub in the metropolitan area within 30 minutes. Most stations of the metropolitan express subway are connected to existing subway stations, so the importance of transfer increased. Although many studies have been conducted on the effect of transfer penalty on route choice, there are few studies on the transfer behavior of the metropolitan express subway. Therefore, in this study, a transfer behavior analysis was conducted on the Shinbundang Line, a representative metropolitan express subway. To analyze the transfer behavior according to the degree of traffic congestion and the presence of fare payment, route choice models were made using transport card data divided according to week, time, and user characteristics. As a result of the analysis, users of the metropolitan express subway had greater disutility to the transfer waiting time compared to the transfer moving time. Furthermore, especially during the peak time, EIVM(Equivalent in-vehicle minutes) of the transfer waiting time was 3.51. In this study, EIVM for metropolitan express subway users were analyzed to be 2.6 minutes, which is significantly lower than the results of previous studies on subways. This suggests that there is a difference in the transfer penalty between subways and metropolitan express subway, and that it is necessary to apply the transfer penalty between subways and express subway differently when forecasting subway traffic demand.

Analysis of Autonomous Vehicles Risk Cases for Developing Level 4+ Autonomous Driving Test Scenarios: Focusing on Perceptual Blind (Lv 4+ 자율주행 테스트 시나리오 개발을 위한 자율주행차량 위험 사례 분석: 인지 음영을 중심으로)

  • Seung min Oh;Jae hee Choi;Ki tae Jang;Jin won Yoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.173-188
    • /
    • 2024
  • With the advancement of autonomous vehicle (AV) technology, autonomous driving on real roads has become feasible. However, there are challenges in achieving complete autonomy due to perceptual blind areas, which occur when the AV's sensory range or capabilities are limited or impaired by surrounding objects or environmental factors. This study aims to analyze AV accident patterns and safety issues of perceptual blind area that may occur in urban areas, with the goal of developing test scenarios for Level 4+ autonomous driving. It utilized AV accident data from the California Department of Motor Vehicles (DMV) to compare accident patterns and characteristics between AVs and conventional vehicles based on activation status of autonomous mode. It also categorized AV disengagement data to identify types and real-world cases of disengagements caused by perceptual blind areas. The analysis revealed that AVs exhibit different accident types due to their safe driving maneuvers, and three types of perceptual blind area scenarios were identified. The findings of this study serve as crucial foundational data for developing Level 4+ autonomous driving test scenarios, enabling the design of efficient strategies to mitigate perceptual blind areas in various scenarios. This, in turn, is expected to contribute to the effective evaluation and enhancement of AV driving safety on real roads.

Derivation of Driving Stability Indicators for Autonomous Vehicles Based on Analyzing Waymo Open Dataset (Waymo Open Dataset 기반 자율차의 주행행태분석을 통한 주행안정성 평가지표 도출)

  • Hoyoon Lee;Jeonghoon Jee;Cheol Oh;Hoseon Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.94-109
    • /
    • 2024
  • As autonomous vehicles are allowed to drive on public roads, there is an increasing amount of on-road data available for research. It has therefore become possible to analyze impacts of autonomous vehicles on traffic safety using real-world data. It is necessary to use indicators that are well-representative of the driving behavior of autonomous vehicles to understand the implications of them on traffic safety. This study aims to derive indicators that effectively reflect the driving stability of autonomous vehicles by analyzing the driving behavior using the Waymo Open Dataset. Principal component analysis was adopted to derive indicators with high explanatory capability for the dataset. Driving stability indicators were separated into longitudinal and lateral ones. The road segments on the dataset were divided into four based on the characteristics of each, which were signalized and unsignalized intersections, tangent road section, and curved road section. The longitudinal driving stability was 35.48% higher in the curved road sections compared to the unsignalized intersections. With regard to the lateral driving stability, the driving stability was 76.08% higher in the signalized intersections than in the unsignalized intersections. The comparison between curved and tangent road segments showed that tangent roads are 146.87% higher regarding lateral driving stability. The results of this study are valuable for the further research to analyze the impact of autonomous vehicles on traffic safety using real-world data.

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Development for City Bus Dirver's Accident Occurrence Prediction Model Based on Digital Tachometer Records (디지털 운행기록에 근거한 시내버스 운전자의 사고발생 예측모형 개발)

  • Kim, Jung-yeul;Kum, Ki-jung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.1-15
    • /
    • 2016
  • This study aims to develop a model by which city bus drivers who are likely to cause an accident can be figured out based on the information about their actual driving records. For this purpose, from the information about the actual driving records of the drivers who have caused an accident and those who have not caused any, significance variables related to traffic accidents are drawn, and the accuracy between models is compared for the classification models developed, applying a discriminant analysis and logistic regression analysis. In addition, the developed models are applied to the data on other drivers' driving records to verify the accuracy of the models. As a result of developing a model for the classification of drivers who are likely to cause an accident, when deceleration ($X_{deceleration}$) and acceleration to the right ($Y_{right}$) are simultaneously in action, this variable was drawn as the optimal factor variable of the classification of drivers who had caused an accident, and the prediction model by discriminant analysis classified drivers who had caused an accident at a rate up to 62.8%, and the prediction model by logistic regression analysis could classify those who had caused an accident at a rate up to 76.7%. In addition, as a result of the verification of model predictive power of the models showed an accuracy rate of 84.1%.

A Framework of Intelligent Middleware for DNA Sequence Analysis in Cloud Computing Environment (DNA 서열 분석을 위한 클라우드 컴퓨팅 기반 지능형 미들웨어 설계)

  • Oh, Junseok;Lee, Yoonjae;Lee, Bong Gyou
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.29-43
    • /
    • 2014
  • The development of NGS technologies, such as scientific workflows, has reduced the time required for decoding DNA sequences. Although the automated technologies change the genome sequence analysis environment, limited computing resources still pose problems for the analysis. Most scientific workflow systems are pre-built platforms and are highly complex because a lot of the functions are implemented into one system platform. It is also difficult to apply components of pre-built systems to a new system in the cloud environment. Cloud computing technologies can be applied to the systems to reduce analysis time and enable simultaneous analysis of massive DNA sequence data. Web service techniques are also introduced for improving the interoperability between DNA sequence analysis systems. The workflow-based middleware, which supports Web services, DBMS, and cloud computing, is proposed in this paper for expecting to reduceanalysis time and aiding lightweight virtual instances. It uses DBMS for managing the pipeline status and supporting the creation of lightweight virtual instances in the cloud environment. Also, the RESTful Web services with simple URI and XML contents are applied for improving the interoperability. The performance test of the system needs to be conducted by comparing results other developed DNA analysis services at the stabilization stage.

Multiple-inputs Dual-outputs Process Characterization and Optimization of HDP-CVD SiO2 Deposition

  • Hong, Sang-Jeen;Hwang, Jong-Ha;Chun, Sang-Hyun;Han, Seung-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.135-145
    • /
    • 2011
  • Accurate process characterization and optimization are the first step for a successful advanced process control (APC), and they should be followed by continuous monitoring and control in order to run manufacturing processes most efficiently. In this paper, process characterization and recipe optimization methods with multiple outputs are presented in high density plasma-chemical vapor deposition (HDP-CVD) silicon dioxide deposition process. Five controllable process variables of Top $SiH_4$, Bottom $SiH_4$, $O_2$, Top RF Power, and Bottom RF Power, and two responses of interest, such as deposition rate and uniformity, are simultaneously considered employing both statistical response surface methodology (RSM) and neural networks (NNs) based genetic algorithm (GA). Statistically, two phases of experimental design was performed, and the established statistical models were optimized using performance index (PI). Artificial intelligently, NN process model with two outputs were established, and recipe synthesis was performed employing GA. Statistical RSM offers minimum numbers of experiment to build regression models and response surface models, but the analysis of the data need to satisfy underlying assumption and statistical data analysis capability. NN based-GA does not require any underlying assumption for data modeling; however, the selection of the input data for the model establishment is important for accurate model construction. Both statistical and artificial intelligent methods suggest competitive characterization and optimization results in HDP-CVD $SiO_2$ deposition process, and the NN based-GA method showed 26% uniformity improvement with 36% less $SiH_4$ gas usage yielding 20.8 ${\AA}/sec$ deposition rate.

Classification of Ovarian Cancer Microarray Data based on Intelligent Systems with Marker gene (선별 시스템 기반 표지 유전자를 포함한 난소암 마이크로어레이 데이터 분류)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.747-752
    • /
    • 2011
  • Microarray classification typically possesses two striking attributes: (1) classifier design and error estimation are based on remarkably small samples and (2) cross-validation error estimation is employed in the majority of the papers. A Microarray data of ovarian cancer consists of the expressions of thens of thousands of genes, and there is no systematic procedure to analyze this information instantaneously. In this paper, gene markers are selected by ranking genes according to statistics, popular classification rules - linear discriminant analysis, k-nearest-neighbor and decision trees - has been performed comparing classification accuracy of data selecting gene markers and not selecting gene markers. The Result that apply linear classification analysis at Microarray data set including marker gene that are selected using ANOVA method represent the highest classification accuracy of 97.78% and the lowest prediction error estimate.