• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.029 seconds

Development of Predictive Pedestrian Collision Warning Service Considering Pedestrian Characteristics (보행자 특성을 고려한 예측형 보행자 충돌 경고 서비스 개발)

  • Ka, Dongho;Lee, Donghoun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.68-83
    • /
    • 2019
  • The number of pedestrian traffic accident fatalities is three times the number of car accidents in South Korea. Serious accidents are caused especially at intersections when the vehicle turns to their right. Various pedestrian collision warning services have been developed, but they are insufficient to prevent dangerous pedestrians. In this study, P2CWS is developed to warn approaching vehicles based on the pedestrians' characteristics. In order to evaluate the performance of the service, actual pedestrian data were collected at the intersection of Daejeon, and comparative analysis was carried out according to pedestrian characteristics. As a result, the performance analysis showed a higher accordance when the characteristics of the pedestrian is considered. Accordingly, we can conclude that identifying pedestrian characteristics in predicting the pedestrian crossing is important.

Effects of Smartphone Usage on Walking Speed using Machine Learning Method (기계학습을 이용한 스마트폰 이용이 보행속도에 미치는 영향 분석)

  • Jin, Hye ryun;Do, Myung sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.93-103
    • /
    • 2019
  • This study analyzed the impact of smartphone usage on walking speed during walking on two pedestrian walkways in Daejeon Metropolitan City. For the analysis, the video data about the actual use of smartphone was acquired and the walking speed was calculated based on the walking density of the pedestrian Level Of Service(LOS) presented in the Road Capacity Manual. Multiple regression analysis and decision tree using machine learning were used to analyze the impact of smartphone usage on walking speed, and as the explanatory variables, gender, disable smartphone, use of smartphone using auditory function, use of smartphone using visual function, LOS A, LOS B, LOS C were adopted. The result showed that LOS C had the highest impact on walking speed change and the women's group using their visual function was founded to have the slowest walking speed in LOS C. In particular, the author found that walking speed significantly decreased in the case of use of visual function rather than listening to music or the hearing on the phone.

Speed Prediction of Urban Freeway Using LSTM and CNN-LSTM Neural Network (LSTM 및 CNN-LSTM 신경망을 활용한 도시부 간선도로 속도 예측)

  • Park, Boogi;Bae, Sang hoon;Jung, Bokyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.86-99
    • /
    • 2021
  • One of the methods to alleviate traffic congestion is to increase the efficiency of the roads by providing traffic condition information on road user and distributing the traffic. For this, reliability must be guaranteed, and quantitative real-time traffic speed prediction is essential. In this study, and based on analysis of traffic speed related to traffic conditions, historical data correlated with traffic flow were used as input. We developed an LSTM model that predicts speed in response to normal traffic conditions, along with a CNN-LSTM model that predicts speed in response to incidents. Through these models, we try to predict traffic speeds during the hour in five-minute intervals. As a result, predictions had an average error rate of 7.43km/h for normal traffic flows, and an error rate of 7.66km/h for traffic incident flows when there was an incident.

Analysis of Incident Impact Factors and Development of SMOGN-DNN Model for Prediction of Incident Clearance Time (돌발상황 처리시간 예측을 위한 영향요인 분석 및 SMOGN-DNN 모델 개발)

  • Yun, Gyu Ri;Bae, Sang Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.46-56
    • /
    • 2021
  • Predicting the incident clearance time is important for eliminating the high transportation costs and congestion from non-repetitive congestion caused by incidents. In this study, the factors influencing the clearance time suitable for domestic road conditions were analyzed, using a training dataset for predicting the incident clearance time using artificial neural networks. In a previous study, the under-prediction problem for high incident clearance time was used. In the present study, over-sampling training data applied using the SMOGN technique was obtained and applied to the model as a solution. As a result, the DNN model applying the SMOGN technique could compensate for the limitations of the previously developed prediction model by predicting the clearance time with the highest accuracy among the models developed in the research process with MAE = 18.3 minutes.

Vulnerability Evaluation by Road Link Based on Clustering Analysis for Disaster Situation (재난·재해 상황을 대비한 클러스터링 분석 기반의 도로링크별 취약성 평가 연구)

  • Jihoon Tak;Jungyeol Hong;Dongjoo Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.29-43
    • /
    • 2023
  • It is necessary to grasp the characteristics of traffic flow passing through a specific road section and the topological structure of the road in advance in order to quickly prepare a movement management strategy in the event of a disaster or disaster. It is because it can be an essential basis for road managers to assess vulnerabilities by microscopic road units and then establish appropriate monitoring and management measures for disasters or disaster situations. Therefore, this study presented spatial density, time occupancy, and betweenness centrality index to evaluate vulnerabilities by road link in the city department and defined spatial-temporal and topological vulnerabilities by clustering analysis based on distance and density. From the results of this study, road administrators can manage vulnerabilities by characterizing each road link group. It is expected to be used as primary data for selecting priority control points and presenting optimal routes in the event of a disaster or disaster.

Development of Performance Evaluation Formula for Deep Learning Image Analysis System (딥러닝 영상분석 시스템의 성능평가 산정식 개발)

  • Hyun Ho Son;Yun Sang Kim;Choul Ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.78-96
    • /
    • 2023
  • Urban traffic information is collected by various systems such as VDS, DSRC, and radar. Recently, with the development of deep learning technology, smart intersection systems are expanding, are more widely distributed, and it is possible to collect a variety of information such as traffic volume, and vehicle type and speed. However, as a result of reviewing related literature, the performance evaluation criteria so far are rbs-based evaluation systems that do not consider the deep learning area, and only consider the percent error of 'reference value-measured value'. Therefore, a new performance evaluation method is needed. Therefore, in this study, individual error, interval error, and overall error are calculated by using a formula that considers deep learning performance indicators such as precision and recall based on data ratio and weight. As a result, error rates for measurement value 1 were 3.99 and 3.54, and rates for measurement value 2 were 5.34 and 5.07.

Analyzing Intention to Use Shared E-scooters Considering Individual Travel Attitudes : The Case of Seoul Metropolitan Areas (개인 통행성향을 고려한 공유 전동킥보드 이용의향 분석: 서울시를 중심으로)

  • Lee, Yoonhee;Koo, Jahun;Choo, Sangho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Recently, e-scooters have been attracting attention as eco-friendly modes of transportation in cities due to an increasing interest in the environment. Accordingly, various studies on usage behavior are being conducted, but studies that reflect individual travel attitudes are insufficient. Therefore, this study surveyed commuters in Seoul and analyzed respondents' traveling attitudes through factor analysis. It also built a binary logistic regression model for the intention to use shared e-scooters to determine how individual travel behaviors are affected. In particular, the model results showed that age, the main mode of transportation (car), walking time to the bus stop, and four travel attitude variables (disutility of travel, preference to self-drive, internet/smartphone friendliness, and willingness to pay extra money for services) significantly affected the intention to use shared e-scooters. This study is expected to be used as basic data, with aspect to travel behavior, for the efficient operation and use of shared e-scooters in the future.

Parameter Analysis for Super-Resolution Network Model Optimization of LiDAR Intensity Image (LiDAR 반사 강도 영상의 초해상화 신경망 모델 최적화를 위한 파라미터 분석)

  • Seungbo Shim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.137-147
    • /
    • 2023
  • LiDAR is used in autonomous driving and various industrial fields to measure the size and distance of an object. In addition, the sensor also provides intensity images based on the amount of reflected light. This has a positive effect on sensor data processing by providing information on the shape of the object. LiDAR guarantees higher performance as the resolution increases but at an increased cost. These conditions also apply to LiDAR intensity images. Expensive equipment is essential to acquire high-resolution LiDAR intensity images. This study developed artificial intelligence to improve low-resolution LiDAR intensity images into high-resolution ones. Therefore, this study performed parameter analysis for the optimal super-resolution neural network model. The super-resolution algorithm was trained and verified using 2,500 LiDAR intensity images. As a result, the resolution of the intensity images were improved. These results can be applied to the autonomous driving field and help improve driving environment recognition and obstacle detection performance

Development of Traffic Situation Integrated Monitoring Indicators Combining Traffic and Safety Characteristics (교통소통과 안전 특성을 결합한 교통상황 모니터링 지표 개발)

  • Young-Been Joo;Jun-Byeong Chae;Jae-Seong Hwang;Choul-Ki Lee;Sang-Soo Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.13-25
    • /
    • 2024
  • In traffic management, gaps in understanding traffic conditions continue to exist. While the self-belonging problem indicator develops relative to speed, belonging, and self-based relative inclination, it does not apply elimination criteria that may indicate situations that contrast with attribute-specific problems. In this study, we develop integrated indicators that specify communication situations and safety levels for modeling. We review indicators of changes in traffic conditions and raise safety issues, reviewing the indicators so that ITS data can be applied, analyzing the relationships between indicators through factor analysis. We develop combined, integrated indicators that can show changes and stability in traffic situations and that can be applied in traffic information centers to contribute to the development of a traffic environment that can monitor related traffic conditions.

A Study on Physical Activity by Transportation Mode Using Heart Rate (심박수를 활용한 교통수단별 신체활동 정보 분석 연구)

  • Jeong, Eunbi;You, Soyoung Iris;Yu, Seung Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.100-115
    • /
    • 2020
  • Recently, with the development of various sensors and communication technologies, the market for wearable devices capable of recording physical activity in connection with a smartphone is expanding. The purpose of this study is to analyze physical activity for each transportation modes in order to utilize wearable devices in the field of transportation. This study consists of three steps: data collection, basic statistical analysis, and physical activity analysis. Four adult males and females were recruited as investigators, and physical activity and route information were collected through Fitbit, a commercial wearable device. From the collected physical activity information, a percentage of heart rate reserve (%HRR) using a heart rate was derived and used for analysis. As a results, it was found that there is a statistically significant difference in heart rate for each transportation mode, and physical activity intensity is the highest when walking. In addition, the results of physical activity analysis for the case of using different routes for the same OD were presented. The results presented in this study are expected to be used as basic data for preparing public transportation activation policies and providing customized services for the future.