• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.023 seconds

Study on the Development of Truck Traffic Accident Prediction Models and Safety Rating on Expressways (고속도로 화물차 교통사고 건수 예측모형 및 안전등급 개발 연구)

  • Jungeun Yoon;Harim Jeong;Jangho Park;Donghyo Kang;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • In this study, the number of truck traffic accidents was predicted by using Poisson and negative binomial regression analysis to understand what factors affect accidents using expressway data. Significant variables in the truck traffic accident prediction model were continuous driving time, link length, truck traffic volume. number of bridges and number of drowsy shelters. The calculated LOSS rating was expressed on the national expressway network to diagnose the risk of truck accidents. This is expected to be used as basic data for policy establishment to reduce truck accidents on expressways.

Scenario-based Future Infantry Brigade Information Distribution Capability Analysis (시나리오 기반의 미래 보병여단 정보유통능력 분석 연구)

  • Junseob Kim;Sangjun Park;Yiju You;Yongchul Kim
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.139-145
    • /
    • 2023
  • The ROK Army is promoting cutting-edge, future-oriented military development such as a mobile, intelligent, and hyper-connected Army TIGER system. The future infantry brigade plans to increase mobility with squad-level tactical vehicles to enable combat in multi-domain operations and to deploy various weapon systems such as surveillance and reconnaissance drones. In addition, it will be developed into an intelligent unit that transmits and receives data collected through the weapon system through a hyper-connected network. Accordingly, the future infantry brigade will transmit and receive more data. However, the Army's tactical information communication system has limitations in operating as a tactical communication system for future units, such as low transmission speed and bandwidth and restrictions on communication support. Therefore, in this paper, the information distribution capability of the future infantry brigade is presented through the offensive operation scenario and M&S.

Effect Analysis of Public Data-Based Automatic Traffic Enforcement Camera Installation Using the Comparison Group Method (비교그룹방법을 이용한 공공데이터 기반 교통단속장비 사고감소 효과분석)

  • Yunseob Lee;Yohee Han;Youngchan Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.168-181
    • /
    • 2023
  • This study analyzed the effects of traffic enforcement on accident reduction. The results revealed a significant reduction in both overall accidents (28.53%) and fatal accidents (39.44%). Notably, enforcement equipment targeting speed limits of 30 km/h and 50 km/h demonstrated similar accident reduction rates of 42.23% and 25.85%, respectively. However, variations were observed based on accident types and types of traffic violations. Therefore, it is evident that enforcement equipment yields distinct accident reduction effects depending on speed limits and types of traffic accidents. This finding underscores the potential for making informed policy decisions to enhance traffic safety measures.

A Study of Effectiveness Analysis for Wide-Area Emergency Vehicle Preemption System : Targeting on Gyeonggi-Do (광역 긴급차량 우선신호시스템 효과분석 연구: 경기도를 중심으로)

  • Min Kim;Jae Seong Hwang;Choul Ki Lee;Byeong Kwon Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.67-76
    • /
    • 2024
  • This study conducted an operational evaluation of an emergency vehicle preemption system that can be operated as a wide-area unit beyond the boundaries of local governments. Analyzed the speed reduction rate of emergency vehicle dispatch data and traffic speed data to analyze the speed reduction rate of emergency vehicles operating in a wide area and region. In Goyang City, local dispatches were reduced by 50.8% and regional dispatches by 55.8%, while in Paju City, local dispatches were reduced by 55.1% and regional dispatches by 62.5%. The wide-area emergency vehicle preemption system proved to be effective when emergency vehicles were dispatched outside of local boundaries, such as confirming that there were many dispatches from Paju-si to Goyang-si when there were no large hospitals nearby. This study aims to help spread the wide-area emergency vehicle preemption system. Translated with DeepL.com (free version)

An Analysis of the Impact of the Surrounding Environment of Subway Stations on Elderly's Subway Use in Seoul during the COVID-19 Pandemic (서울시 지하철역 주변 환경이 고령자의 통행량에 미치는 영향 분석: COVID-19 기간을 중심으로)

  • Jin Bee Lee;Sangho Choo;Ju Hee Seo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.1-15
    • /
    • 2024
  • The COVID-19 pandemic significantly impacted societies, particularly the elderly with higher susceptibility and mobility constraints. This study investigates COVID-19's influence on elderly travel at subway stations using card data. Analyzing pre/post-COVID-19 data via multilinear regression, we found factors like subway transfer lines, presence of rivers, the area of traditional markets, number of traditional Korean medicine clinics, number of cultural facilities, and number of large commercial facilities correlated positively with elderly travel. Post-COVID-19, effects of variables related to public transportation and employment, and indoor leisure facilities decreased, while the effects of outdoor and traditional culture-related facilities increased. These findings indicate significant pandemic-induced alterations in the mobility patterns of senior citizens in Seoul, highlighting shifts towards safer, more accessible environments.

A Study on the Machine Learning Model for Product Faulty Prediction in Internet of Things Environment (사물인터넷 환경에서 제품 불량 예측을 위한 기계 학습 모델에 관한 연구)

  • Ku, Jin-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • In order to provide intelligent services without human intervention in the Internet of Things environment, it is necessary to analyze the big data generated by the IoT device and learn the normal pattern, and to predict the abnormal symptoms such as faulty or malfunction based on the learned normal pattern. The purpose of this study is to implement a machine learning model that can predict product failure by analyzing big data generated in various devices of product process. The machine learning model uses the big data analysis tool R because it needs to analyze based on existing data with a large volume. The data collected in the product process include the information about product faulty, so supervised learning model is used. As a result of the study, I classify the variables and variable conditions affecting the product failure, and proposed a prediction model for the product failure based on the decision tree. In addition, the predictive power of the model was significantly higher in the conformity and performance evaluation analysis of the model using the ROC curve.

Combined Artificial Bee Colony for Data Clustering (융합 인공벌군집 데이터 클러스터링 방법)

  • Kang, Bum-Su;Kim, Sung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.203-210
    • /
    • 2017
  • Data clustering is one of the most difficult and challenging problems and can be formally considered as a particular kind of NP-hard grouping problems. The K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, it has high possibility to trap in local optimum and high variation of solutions with different initials for the large data set. Therefore, we need study efficient computational intelligence method to find the global optimal solution in data clustering problem within limited computational time. The objective of this paper is to propose a combined artificial bee colony (CABC) with K-means for initialization and finalization to find optimal solution that is effective on data clustering optimization problem. The artificial bee colony (ABC) is an algorithm motivated by the intelligent behavior exhibited by honeybees when searching for food. The performance of ABC is better than or similar to other population-based algorithms with the added advantage of employing fewer control parameters. Our proposed CABC method is able to provide near optimal solution within reasonable time to balance the converged and diversified searches. In this paper, the experiment and analysis of clustering problems demonstrate that CABC is a competitive approach comparing to previous partitioning approaches in satisfactory results with respect to solution quality. We validate the performance of CABC using Iris, Wine, Glass, Vowel, and Cloud UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KABCK (K-means+ABC+K-means) is better than ABCK (ABC+K-means), KABC (K-means+ABC), ABC, and K-means in our simulations.

A study on Data Preprocessing for Developing Remaining Useful Life Predictions based on Stochastic Degradation Models Using Air Craft Engine Data (항공엔진 열화데이터 기반 잔여수명 예측력 향상을 위한 데이터 전처리 방법 연구)

  • Yoon, Yeon Ah;Jung, Jin Hyeong;Lim, Jun Hyoung;Chang, Tai-Woo;Kim, Yong Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.48-55
    • /
    • 2020
  • Recently, a study of prognosis and health management (PHM) was conducted to diagnose failure and predict the life of air craft engine parts using sensor data. PHM is a framework that provides individualized solutions for managing system health. This study predicted the remaining useful life (RUL) of aeroengine using degradation data collected by sensors provided by the IEEE 2008 PHM Conference Challenge. There are 218 engine sensor data that has initial wear and production deviations. It was difficult to determine the characteristics of the engine parts since the system and domain-specific information was not provided. Each engine has a different cycle, making it difficult to use time series models. Therefore, this analysis was performed using machine learning algorithms rather than statistical time series models. The machine learning algorithms used were a random forest, gradient boost tree analysis and XG boost. A sliding window was applied to develop RUL predictions. We compared model performance before and after applying the sliding window, and proposed a data preprocessing method to develop RUL predictions. The model was evaluated by R-square scores and root mean squares error (RMSE). It was shown that the XG boost model of the random split method using the sliding window preprocessing approach has the best predictive performance.

Design of Particle Swarm Optimization-based Polynomial Neural Networks (입자 군집 최적화 알고리즘 기반 다항식 신경회로망의 설계)

  • Park, Ho-Sung;Kim, Ki-Sang;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.398-406
    • /
    • 2011
  • In this paper, we introduce a new architecture of PSO-based Polynomial Neural Networks (PNN) and discuss its comprehensive design methodology. The conventional PNN is based on a extended Group Method of Data Handling (GMDH) method, and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons located in each layer through a growth process of the network. Moreover it does not guarantee that the conventional PNN generated through learning results in the optimal network architecture. The PSO-based PNN results in a structurally optimized structure and comes with a higher level of flexibility that the one encountered in the conventional PNN. The PSO-based design procedure being applied at each layer of PNN leads to the selection of preferred PNs with specific local characteristics (such as the number of input variables, input variables, and the order of the polynomial) available within the PNN. In the sequel, two general optimization mechanisms of the PSO-based PNN are explored: the structural optimization is realized via PSO whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the PSO-based PNN, the model is experimented with using Gas furnace process data, and pH neutralization process data. For the characteristic analysis of the given entire data with non-linearity and the construction of efficient model, the given entire system data is partitioned into two type such as Division I(Training dataset and Testing dataset) and Division II(Training dataset, Validation dataset, and Testing dataset). A comparative analysis shows that the proposed PSO-based PNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification (공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘)

  • Hong, Sung-Sam;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Since big-data text mining extracts many features and data, clustering and classification can result in high computational complexity and low reliability of the analysis results. In particular, a term document matrix obtained through text mining represents term-document features, but produces a sparse matrix. We designed an advanced genetic algorithm (GA) to extract features in text mining for detection model. Term frequency inverse document frequency (TF-IDF) is used to reflect the document-term relationships in feature extraction. Through a repetitive process, a predetermined number of features are selected. And, we used the sparsity score to improve the performance of detection model. If a spam mail data set has the high sparsity, detection model have low performance and is difficult to search the optimization detection model. In addition, we find a low sparsity model that have also high TF-IDF score by using s(F) where the numerator in fitness function. We also verified its performance by applying the proposed algorithm to text classification. As a result, we have found that our algorithm shows higher performance (speed and accuracy) in attack mail classification.