• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.032 seconds

Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases (강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계)

  • Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.586-591
    • /
    • 2014
  • In this study, we introduce Radial Basis Function Neural Networks(RBFNNs) classifier using Artificial Bee Colony(ABC) algorithm in order to classify between precipitation event and non-precipitation event from given radar data. Input information data is rebuilt up through feature analysis of meteorological radar data used in Korea Meteorological Administration. In the condition phase of the proposed classifier, the values of fitness are obtained by using Fuzzy C-Mean clustering method, and the coefficients of polynomial function used in the conclusion phase are estimated by least square method. In the aggregation phase, the final output is obtained by using fuzzy inference method. The performance results of the proposed classifier are compared and analyzed by considering both QC(Quality control) data and CZ(corrected reflectivity) data being used in Korea Meteorological Administration.

러프집합과 계층적 분류구조를 이용한 데이터마이닝에서 분류지식발견

  • Lee, Chul-Heui;Seo, Seon-Hak
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.202-209
    • /
    • 2002
  • This paper deals with simplification of classification rules for data mining and rule bases for control systems. Datamining that extracts useful information from such a large amount of data is one of important issues. There are various ways in classification methodologies for data mining such as the decision trees and neural networks, but the result should be explicit and understandable and the classification rules be short and clear. The rough sets theory is an effective technique in extracting knowledge from incomplete and inconsistent data and provides a good solution for classification and approximation by using various attributes effectively This paper investigates granularity of knowledge for reasoning of uncertain concopts by using rough set approximations and uses a hierarchical classification structure that is more effective technique for classification by applying core to upper level. The proposed classification methodology makes analysis of an information system eary and generates minimal classification rules.

Federated Learning-based Route Choice Modeling for Preserving Driver's Privacy in Transportation Big Data Application (교통 빅데이터 활용 시 개인 정보 보호를 위한 연합학습 기반의 경로 선택 모델링)

  • Jisup Shim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.157-167
    • /
    • 2023
  • The use of big data for transportation often involves using data that includes personal information, such as the driver's driving routes and coordinates. This study explores the creation of a route choice prediction model using a large dataset from mobile navigation apps using federated learning. This privacy-focused method used distributed computing and individual device usage. This study established preprocessing and analysis methods for driver data that can be used in route choice modeling and compared the performance and characteristics of widely used learning methods with federated learning methods. The performance of the model through federated learning did not show significantly superior results compared to previous models, but there was no substantial difference in the prediction accuracy. In conclusion, federated learning-based prediction models can be utilized appropriately in areas sensitive to privacy without requiring relatively high predictive accuracy, such as a driver's preferred route choice.

Microscopic Traffic Analysis of Freeway Based on Vehicle Trajectory Data Using Drone Images (드론 영상을 활용한 차량궤적자료 기반 고속도로 미시적 교통분석)

  • Ko, Eunjeong;Kim, Soohee;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.66-83
    • /
    • 2021
  • Vehicles experience changes in driving behavior due to the various facilities on the freeway. These sections may cause repetitive traffic congestion when the traffic volume increases, so safety issues may be raised. Therefore, the purpose of this study is to perform microscopic traffic analysis on these sections using drone images and to identify the causes of traffic problems. In the case of drone image, since trajectory data of individual vehicles can be obtained, empirical analysis of driving behavior is possible. The analysis section of this study was selected as the weaving section of Pangyo IC and the sag section of Seohae Bridge. First, the trajectory data was extracted through the drone image. And the microscopic traffic analysis performed on the speed, density, acceleration, and lane change through cell-unit analysis using Generalized definition method. This analysis results can be used as a basic study to identify the cause of the problem section in the freeway. Through this, we aim to improve the efficiency and convenience of traffic analysis.

A Study on Conversational Public Administration Service of the Chatbot Based on Artificial Intelligence (인공지능 기반 대화형 공공 행정 챗봇 서비스에 관한 연구)

  • Park, Dong-ah
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1347-1356
    • /
    • 2017
  • Artificial intelligence-based services are expanding into a new industrial revolution. There is artificial intelligence technology applied in real life due to the development of big data and deep learning related technology. And data analysis and intelligent assistant services that integrate information from various fields have also been commercialized. Chatbot with interactive artificial intelligence provide shopping, news or information. Chatbot service, which has begun to be adopted by some public institutions, is now just a first step in the steps. This study summarizes the services and technical analysis of chatbot. and the direction of public administration service chatbot was presented.

A Post-Analysis of Decision Tree to Detect the Change of Customer Behavior on Internet Shopping Mall

  • Kim, Jae kyeong;Song, Hee-Seok;Kim, Tae-Sung
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.456-463
    • /
    • 2001
  • Understanding and adapting to changes of customer behavior in internet shopping mall is an important aspect to survive in continuously changing environment. This paper develops a methodology based on decision tree algorithms to detect changes of customer behavior automatically from customer profiles and sales data at different time snapshots. We first define three types of changes as emerging pattern, unexpected change and the added/perished rule. Then, it is developed similarity and difference measures for rule matching to detect all types of change. Finally, the degree of change is developed to evaluate the amount of change. A Korean internet shopping mall case is evaluated to represent the performance of our methodology. And practical business implications for this methodology are also provided.

  • PDF

Comparison of Alternative knowledge Acquisition Methods for Allergic Rhinitis

  • Chae, Young-Moon;Chung, Seung-Kyu;Suh, Jae-Gwon;Ho, Seung-Hee;Park, In-Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.91-109
    • /
    • 1995
  • This paper compared four knowledge acquisition methods (namely, neural network, case-based reasoning, discriminant analysis, and covariance structure modeling) for allergic rhinitis. The data were collected from 444 patients with suspected allergic rhinitis who visited the Otorlaryngology Deduring 1991-1993. Among four knowledge acquisition methods, the discriminant model had the best overall diagnostic capability (78%) and the neural network had slightly lower rate(76%). This may be explained by the fact that neural network is essentially non-linear discriminant model. The discriminant model was also most accurate in predicting allergic rhinitis (88%). On the other hand, the CSM had the lowest overall accuracy rate (44%) perhaps due to smaller input data set. However, it was most accuate in predicting non-allergic rhinitis (82%).

  • PDF

Integrating Spatial Proximity with Manifold Learning for Hyperspectral Data

  • Kim, Won-Kook;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.693-703
    • /
    • 2010
  • High spectral resolution of hyperspectral data enables analysis of complex natural phenomena that is reflected on the data nonlinearly. Although many manifold learning methods have been developed for such problems, most methods do not consider the spatial correlation between samples that is inherent and useful in remote sensing data. We propose a manifold learning method which directly combines the spatial proximity and the spectral similarity through kernel PCA framework. A gain factor caused by spatial proximity is first modelled with a heat kernel, and is added to the original similarity computed from the spectral values of a pair of samples. Parameters are tuned with intelligent grid search (IGS) method for the derived manifold coordinates to achieve optimal classification accuracies. Of particular interest is its performance with small training size, because labelled samples are usually scarce due to its high acquisition cost. The proposed spatial kernel PCA (KPCA) is compared with PCA in terms of classification accuracy with the nearest-neighbourhood classification method.

Dynamic Fog-Cloud Task Allocation Strategy for Smart City Applications

  • Salim, Mikail Mohammed;Kang, Jungho;Park, Jong Hyuk
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.128-130
    • /
    • 2021
  • Smart cities collect data from thousands of IoT-based sensor devices for intelligent application-based services. Centralized cloud servers support application tasks with higher computation resources but introduce network latency. Fog layer-based data centers bring data processing at the edge, but fewer available computation resources and poor task allocation strategy prevent real-time data analysis. In this paper, tasks generated from devices are distributed as high resource and low resource intensity tasks. The novelty of this research lies in deploying a virtual node assigned to each cluster of IoT sensor machines serving a joint application. The node allocates tasks based on the task intensity to either cloud-computing or fog computing resources. The proposed Task Allocation Strategy provides seamless allocation of jobs based on process requirements.

Designing of Multi-tier GIS Architecture for Distributed Network Environment

  • Nie, Yoshinori;Nakamura, Morikazu;Miyagi, Hayao;Onaga, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.541-544
    • /
    • 2000
  • This paper presents a multitier GIS architecture to adapt to large-scale distributed networks and to improve data transfer performance with intelligent caching technique. We design this system using UML based on object-oriented analysis. We show some advantages in our proposed system against the ordinary GIS, in special, suitability to distributed networks.

  • PDF