• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.021 seconds

An Evaluation Model of Corporate Culture Using Fuzzy System (퍼지시스템을 이용한 기업문화 평가모델)

  • Kim, Chun-Ho;Hwang, Seung-Gook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.267-272
    • /
    • 2010
  • This paper suggests an evaluation method through corporate culture's evaluation model considering the relationship and affection between types and elements of corporate culture. 314 data obtained from the members of small and medium enterprises analyzed the relationship by the correlation analysis, and the degree affecting rate the corporate culture types by the regression analysis. Finally, fuzzy system was used to analyze the evaluation model of the corporate culture type. The evaluation model of the corporate culture types in this paper is mixed possibility and necessity sides and showed the usefulness through reviewing the model which has an identification problem of the fuzzy system estimated fuzzy relation matrix for corporate culture types using the model.

Fuzzy Analysis for Consciousness Structure of Core Competency of Manufacturing Workers (현장근로자 핵심역량의 의식구조에 대한 퍼지분석)

  • Gi, Jong-Dai;Hwang, Seung-Gook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.378-382
    • /
    • 2011
  • This paper develops the core competencies of manufacturing workers, analyze the consciousness structure on the core competencies. As the analyzing method of consciousness structure, ISM(Interpretive Structural Modeling) and FSM(Fuzzy Structural Modeling) are used to classify layers and determine the connection state. However, the element of each layer is frequently changed by data. This paper suggests the method with the point of view that the structure is determined basically and the connection state of the structure model is changeable depending on the method; first to determine structure model by ISM, second to determine connection by FSM. By using this method, the objective structure model, analyzing the consciousness on the core competencies of manufacturing workers, is suggested with specialist confirm.

Induction Motor Diagnosis System by Effective Frequency Selection and Linear Discriminant Analysis (유효 주파수 선택과 선형판별분석기법을 이용한 유도전동기 고장진단 시스템)

  • Lee, Dae-Jong;Cho, Jae-Hoon;Yun, Jong-Hwan;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.380-387
    • /
    • 2010
  • For the fault diagnosis of three-phase induction motors, we propose a diagnosis algorithm based on mutual information and linear discriminant analysis (LDA). The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, DFT is performed to transform the acquired current signal into frequency domain. And then, frequency components are selected according to discriminate order calculated by mutual information As the next step, feature extraction is performed by LDA, and then diagnosis is evaluated by k-NN classifier. The results to verify the usability of the proposed algorithm showed better performance than various conventional methods.

Research on Intelligent Anomaly Detection System Based on Real-Time Unstructured Object Recognition Technique (실시간 비정형객체 인식 기법 기반 지능형 이상 탐지 시스템에 관한 연구)

  • Lee, Seok Chang;Kim, Young Hyun;Kang, Soo Kyung;Park, Myung Hye
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.546-557
    • /
    • 2022
  • Recently, the demand to interpret image data with artificial intelligence in various fields is rapidly increasing. Object recognition and detection techniques using deep learning are mainly used, and video integration analysis to determine unstructured object recognition is a particularly important problem. In the case of natural disasters or social disasters, there is a limit to the object recognition structure alone because it has an unstructured shape. In this paper, we propose intelligent video integration analysis system that can recognize unstructured objects based on video turning point and object detection. We also introduce a method to apply and evaluate object recognition using virtual augmented images from 2D to 3D through GAN.

MalDC: Malicious Software Detection and Classification using Machine Learning

  • Moon, Jaewoong;Kim, Subin;Park, Jangyong;Lee, Jieun;Kim, Kyungshin;Song, Jaeseung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1466-1488
    • /
    • 2022
  • Recently, the importance and necessity of artificial intelligence (AI), especially machine learning, has been emphasized. In fact, studies are actively underway to solve complex and challenging problems through the use of AI systems, such as intelligent CCTVs, intelligent AI security systems, and AI surgical robots. Information security that involves analysis and response to security vulnerabilities of software is no exception to this and is recognized as one of the fields wherein significant results are expected when AI is applied. This is because the frequency of malware incidents is gradually increasing, and the available security technologies are limited with regard to the use of software security experts or source code analysis tools. We conducted a study on MalDC, a technique that converts malware into images using machine learning, MalDC showed good performance and was able to analyze and classify different types of malware. MalDC applies a preprocessing step to minimize the noise generated in the image conversion process and employs an image augmentation technique to reinforce the insufficient dataset, thus improving the accuracy of the malware classification. To verify the feasibility of our method, we tested the malware classification technique used by MalDC on a dataset provided by Microsoft and malware data collected by the Korea Internet & Security Agency (KISA). Consequently, an accuracy of 97% was achieved.

Teaching-learning-based strategy to retrofit neural computing toward pan evaporation analysis

  • Rana Muhammad Adnan Ikram;Imran Khan;Hossein Moayedi;Loke Kok Foong;Binh Nguyen Le
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • Indirect determination of pan evaporation (PE) has been highly regarded, due to the advantages of intelligent models employed for this objective. This work pursues improving the reliability of a popular intelligent model, namely multi-layer perceptron (MLP) through surmounting its computational knots. Available climatic data of Fresno weather station (California, USA) is used for this study. In the first step, testing several most common trainers of the MLP revealed the superiority of the Levenberg-Marquardt (LM) algorithm. It, therefore, is considered as the classical training approach. Next, the optimum configurations of two metaheuristic algorithms, namely cuttlefish optimization algorithm (CFOA) and teaching-learning-based optimization (TLBO) are incorporated to optimally train the MLP. In these two models, the LM is replaced with metaheuristic strategies. Overall, the results demonstrated the high competency of the MLP (correlations above 0.997) in the presence of all three strategies. It was also observed that the TLBO enhances the learning and prediction accuracy of the classical MLP (by nearly 7.7% and 9.2%, respectively), while the CFOA performed weaker than LM. Moreover, a comparison between the efficiency of the used metaheuristic optimizers showed that the TLBO is a more time-effective technique for predicting the PE. Hence, it can serve as a promising approach for indirect PE analysis.

Establishment of Strategy for Management of Technology Using Data Mining Technique (데이터 마이닝을 통한 기술경영 전략 수립에 관한 연구)

  • Lee, Junseok;Lee, Joonhyuck;Kim, Gabjo;Park, Sangsung;Jang, Dongsik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.126-132
    • /
    • 2015
  • Technology forecasting is about understanding a status of a specific technology in the future, based on the current data of the technology. It is useful when planning technology management strategies. These days, it is common for countries, companies, and researchers to establish R&D directions and strategies by utilizing experts' opinions. However, this qualitative method of technology forecasting is costly and time consuming since it requires to collect a variety of opinions and analysis from many experts. In order to deal with these limitations, quantitative method of technology forecasting is being studied to secure objective forecast result and help R&D decision making process. This paper suggests a methodology of technology forecasting based on quantitative analysis. The methodology consists of data collection, principal component analysis, and technology forecasting by logistic regression, which is one of the data mining techniques. In this research, patent documents related to autonomous vehicle are collected. Then, the texts from patent documents are extracted by text mining technique to construct an appropriate form for analysis. After principal component analysis, logistic regression is performed by using principal component score. On the basis of this result, it is possible to analyze R&D development situation and technology forecasting.

A Study on the Node Split in Decision Tree with Multivariate Target Variables (다변량 목표변수를 갖는 의사결정나무의 노드분리에 관한 연구)

  • Kim, Seong-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.386-390
    • /
    • 2003
  • Data mining is a process of discovering useful patterns for decision making from an amount of data. It has recently received much attention in a wide range of business and engineering fields. Classifying a group into subgroups is one of the most important subjects in data mining. Tree-based methods, known as decision trees, provide an efficient way to finding the classification model. The primary concern in tree learning is to minimize a node impurity, which is evaluated using a target variable in the data set. However, there are situations where multiple target variable should be taken into account, for example, such as manufacturing process monitoring, marketing science, and clinical and health analysis. The purpose of this article is to present some methods for measuring the node impurity, which are applicable to data sets with multivariate target variables. For illustration, a numerical cxample is given with discussion.

Analysis of User Demand Characteristics of Currently-established Night Bus in Seoul by Using Smart Card Data : Case Study on Gangnam Station (스마트카드 데이터를 이용한 심야버스 이용수요 특성분석 : 강남역을 중심으로)

  • Kim, Min ju;Lee, Young ihn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.101-116
    • /
    • 2017
  • This Study estimates the actual night traffic using the smart card data used by most of the public transportation users, and compares it with the current night bus routes by KT Telecom based on the night time call volume. In order to compare the current night bus and night trips evaluated by smart card data, we presented indicators related to the degree of matching, and estimated the volume of service currently provided. The unique approach of the study is that we chose subway station instead of bus stop for the unit of the study. Bus stops has their complexity in a way that stops with same name could belong to different administrative area depending on its direction. For this reason, we decided to use subway station and defined its adjacent administrative district as the scope of influence. Since night bus is the primary means of transportation during the late night, it is anticipated that they will be able to provide better service by calculating the actual traffic and selecting the routes.

Design of Meteorological Radar Pattern Classifier Using Clustering-based RBFNNs : Comparative Studies and Analysis (클러스터링 기반 RBFNNs를 이용한 기상레이더 패턴분류기 설계 : 비교 연구 및 해석)

  • Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.536-541
    • /
    • 2014
  • Data through meteorological radar includes ground echo, sea-clutter echo, anomalous propagation echo, clear echo and so on. Each echo is a kind of non-precipitation echoes and the characteristic of individual echoes is analyzed in order to identify with non-precipitation. Meteorological radar data is analyzed through pre-processing procedure because the data is given as big data. In this study, echo pattern classifier is designed to distinguish non-precipitation echoes from precipitation echo in meteorological radar data using RBFNNs and echo judgement module. Output performance is compared and analyzed by using both HCM clustering-based RBFNNs and FCM clustering-based RBFNNs.