• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.052 seconds

The interrelationship between the functional characteristics and the intelligent personal assistant (지능형 개인비서(IPA)의 기능특성과 사용의도의 연관성)

  • Kim, Chan-Woo;Suh, Chang-Kyo
    • The Journal of Information Systems
    • /
    • v.26 no.4
    • /
    • pp.163-188
    • /
    • 2017
  • Purpose The purpose of this study is to empirically analyze the factors affecting the intention to use the IPA focusing on functional characteristics. Based on the research result, this research has significance in that it not only suggested strategic guidelines for the related business operators, it also helped identify the factors that will influence the intention to use an intelligent personal assistant centering on the functional characteristics of the IPA. Design/methodology/approach Accordingly, in an attempt to identify factors that will influence the intention to use the intelligent personal assistant, we proposed a research model, together with a corresponding hypothesis, which incorporates the functional characteristics (personalization, anthropomorphism, autonomy, communication ability, contextual offer) and perceived enjoyment of the intelligent personal assistant into a technology acceptance model. To verify the research hypothesis of this research, we have conducted a questionnaire survey with individuals who have used an intelligent personal assistant as target. And with the data collected from 215 copies of the questionnaire survey, we have carried out a path analysis using the PLS structural equation. Findings As a result, it turned out that, of the IPA functional characteristics, personalization had a positive effect on perceived usefulness, autonomy had a positive effect on perceived usefulness and perceived ease of use. Also, communication ability had a positive effect on perceived ease of use and perceived enjoyment, and anthropomorphism and contextual offer had a positive effect on perceived ease of use and perceived enjoyment and turned out to be major factors that increased the use intention of intelligent personal assistant.

Development of an intelligent skin condition diagnosis information system based on social media

  • Kim, Hyung-Hoon;Ohk, Seung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.241-251
    • /
    • 2022
  • Diagnosis and management of customer's skin condition is an important essential function in the cosmetics and beauty industry. As the social media environment spreads and generalizes to all fields of society, the interaction of questions and answers to various and delicate concerns and requirements regarding the diagnosis and management of skin conditions is being actively dealt with in the social media community. However, since social media information is very diverse and atypical big data, an intelligent skin condition diagnosis system that combines appropriate skin condition information analysis and artificial intelligence technology is necessary. In this paper, we developed the skin condition diagnosis system SCDIS to intelligently diagnose and manage the skin condition of customers by processing the text analysis information of social media into learning data. In SCDIS, an artificial neural network model, AnnTFIDF, that automatically diagnoses skin condition types using artificial neural network technology, a deep learning machine learning method, was built up and used. The performance of the artificial neural network model AnnTFIDF was analyzed using test sample data, and the accuracy of the skin condition type diagnosis prediction value showed a high performance of about 95%. Through the experimental and performance analysis results of this paper, SCDIS can be evaluated as an intelligent tool that can be used efficiently in the skin condition analysis and diagnosis management process in the cosmetic and beauty industry. And this study can be used as a basic research to solve the new technology trend, customized cosmetics manufacturing and consumer-oriented beauty industry technology demand.

Study on Applicability of the Vehicle Detection Using a Coil Sensor (코일센서를 이용한 차량검지기 적용성에 대한 연구)

  • Lee, Sang-O;Lee, Choul-Ki;Yun, Ilsoo;Kim, Nam-Sun;Lee, Yong-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.14-23
    • /
    • 2015
  • This study was intended to evaluate the feasibility of the vehicle detector using a coil sensor. For the evaluation, the research team built a test environment for the detector consisting of a oscillation circuit, data collecting circuit, data monitoring and saving circuit, etc. As the result of the frequency analysis of the detector from the test environment, it was verified for the detector using a coil sensor to generate stable frequencies. In addition, the ease of construction and management was tested by comparing the size of cutting areas, consumption of installation materials, and installation time for a traditional loop detector and the detector using a coil sensor. As a result, the installation of the detector using a coil sensor requires less size of cutting areas, consumption of installation materials, and installation time.

A Movie Rating Prediction System of User Propensity Analysis based on Collaborative Filtering and Fuzzy System (협업적 필터링 및 퍼지시스템 기반 사용자 성향분석에 의한 영화평가 예측 시스템)

  • Lee, Soo-Jin;Jeon, Tae-Ryong;Baek, Gyeong-Dong;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.242-247
    • /
    • 2009
  • Recently an intelligent system is developed for the service what users want not a passive system which just answered user's request. This intelligent system is used for personalized recommendation system and representative techniques are content-based and collaborative filtering. In this study, we propose a prediction system which is based on the techniques of recommendation system using a collaborative filtering and a fuzzy system to solve the collaborative filtering problems. In order to verify the prediction system, we used the data that is user's rating about movies. We predicted the user's rating using this data. The accuracy of this prediction system is determined by computing the RMSE(root mean square error) of the system's prediction against the actual rating about the each movie and is compared with the existing system. Thus, this prediction system can be applied to base technology of recommendation system and also recommendation of multimedia such as music and books.

Convolutional Neural Network with Expert Knowledge for Hyperspectral Remote Sensing Imagery Classification

  • Wu, Chunming;Wang, Meng;Gao, Lang;Song, Weijing;Tian, Tian;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3917-3941
    • /
    • 2019
  • The recent interest in artificial intelligence and machine learning has partly contributed to an interest in the use of such approaches for hyperspectral remote sensing (HRS) imagery classification, as evidenced by the increasing number of deep framework with deep convolutional neural networks (CNN) structures proposed in the literature. In these approaches, the assumption of obtaining high quality deep features by using CNN is not always easy and efficient because of the complex data distribution and the limited sample size. In this paper, conventional handcrafted learning-based multi features based on expert knowledge are introduced as the input of a special designed CNN to improve the pixel description and classification performance of HRS imagery. The introduction of these handcrafted features can reduce the complexity of the original HRS data and reduce the sample requirements by eliminating redundant information and improving the starting point of deep feature training. It also provides some concise and effective features that are not readily available from direct training with CNN. Evaluations using three public HRS datasets demonstrate the utility of our proposed method in HRS classification.

A Study on the Factors Affecting the Success of Intelligent Public Service: Information System Success Model Perspective (판별시스템 중심의 지능형공공서비스 성공에 영향을 미치는 요인 연구: 정보시스템성공모형을 중심으로)

  • Kim, Jung Yeon;Lee, Kyoung Su;Kwon, Oh Byung
    • The Journal of Information Systems
    • /
    • v.32 no.1
    • /
    • pp.109-146
    • /
    • 2023
  • Purpose With Intelligent public service (IPS), it is possible to automate the quality of civil affairs, provide customized services for citizens, and provide timely public services. However, empirical studies on factors for the successful use of IPS are still insufficient. Hence, the purpose of this study is to empirically analyze the factors that affect the success of IPS with classification function. ISSM (Information System Success Model) is considered as the underlying research model, and how the algorithm quality, data quality, and environmental quality of the discrimination system affect the relationship between utilization intentions is analyzed. Design/methodology/approach In this study, a survey was conducted targeting users using IPS. After giving them a preliminary explanation of the intelligent public service centered on the discrimination system, they briefly experienced two types of IPS currently being used in the public sector. Structural model analysis was conducted using Smart-PLS 4.0 with a total of 415 valid samples. Findings First, it was confirmed that algorithm quality and data quality had a significant positive (+) effect on information quality and system quality. Second, it was confirmed that information quality, system quality, and environmental quality had a positive (+) effect on the use of IPS. Thirdly, it was confirmed that the use of IPS had a positive (+) effect on the net profit for the use of IPS. In addition, the moderating effect of the degree of knowledge on AI, the perceived accuracy of discriminative experience and IPS, and the user was analyzed. The results suggest that ISSM and TOE framework can expand the understanding of the success of IPS.

Contact Tracking Development Trend Using Bibliometric Analysis

  • Li, Chaoqun;Chen, Zhigang;Yu, Tongrui;Song, Xinxia
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.359-373
    • /
    • 2022
  • The new crown pneumonia (COVID-19) has become a global epidemic. The disease has spread to most countries and poses a challenge to the healthcare system. Contact tracing technology is an effective way for public health to deal with diseases. Many experts have studied traditional contact tracing and developed digital contact tracking. In order to better understand the field of contact tracking, it is necessary to analyze the development of contact tracking in the field of computer science by bibliometrics. The purpose of this research is to use literature statistics and topic analysis to characterize the research literature of contact tracking in the field of computer science, to gain an in-depth understanding of the literature development status of contact tracking and the trend of hot topics over the past decade. In order to achieve the aforementioned goals, we conducted a bibliometric study in this paper. The study uses data collected from the Scopus database. Which contains more than 10,000 articles, including more than 2,000 in the field of computer science. For popular trends, we use VOSviewer for visual analysis. The number of contact tracking documents published annually in the computer field is increasing. At present, there are 200 to 300 papers published in the field of computer science each year, and the number of uncited papers is relatively small. Through the visual analysis of the paper, we found that the hot topic of contact tracking has changed from the past "mathematical model," "biological model," and "algorithm" to the current "digital contact tracking," "privacy," and "mobile application" and other topics. Contact tracking is currently a hot research topic. By selecting the most cited papers, we can display high-quality literature in contact tracking and characterize the development trend of the entire field through topic analysis. This is useful for students and researchers new to field of contact tracking ai well as for presenting our results to other subjects. Especially when comprehensive research cannot be conducted due to time constraints or lack of precise research questions, our research analysis can provide value for it.

Development of Web-based Intelligent Recommender Systems using Advanced Data Mining Techniques (개선된 데이터 마이닝 기술에 의한 웹 기반 지능형 추천시스템 구축)

  • Kim Kyoung-Jae;Ahn Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.3
    • /
    • pp.41-56
    • /
    • 2005
  • Product recommender system is one of the most popular techniques for customer relationship management. In addition, collaborative filtering (CF) has been known to be one of the most successful recommendation techniques in product recommender systems. However, CF has some limitations such as sparsity and scalability problems. This study proposes hybrid cluster analysis and case-based reasoning (CBR) to address these problems. CBR may relieve the sparsity problem because it recommends products using customer profile and transaction data, but it may still give rise to scalability problem. Thus, this study uses cluster analysis to reduce search space prior to CBR for scalability Problem. For cluster analysis, this study employs hybrid genetic and K-Means algorithms to avoid possibility of convergence in local minima of typical cluster analyses. This study also develops a Web-based prototype system to test the superiority of the proposed model.

  • PDF

Implementation of Intelligent Warning system through Prediction and Analysis of Disaster Information (재난정보 예측·분석을 통한 지능형 경보체계 구축 방안)

  • Shim, Hyoung-Seop;You, Beom-Jong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.191-192
    • /
    • 2018
  • 본 논문에서는 재난안전정보를 수집 연계 체계를 구축하여, 재난유형별 예측 분석을 통한 지능형 경보체계 구축 방안을 연구하였다. 각 부처 기관이 보유하고 있는 재난안전정보 유형별 분류하여 빅데이터 기반의 예측 분석을 지원할 수 있는 체계를 제시하였다.

  • PDF

Comparison of On-Device AI Software Tools

  • Song, Hong-Jong
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.246-251
    • /
    • 2022
  • As the number of data and devices explodes, centralized data processing and AI analysis have limitations due to the load on the network and cloud. On-device AI technology can provide intelligent services without overloading the network and cloud because the device itself performs AI models. Accordingly, the need for on-device AI technology is emerging. Many smartphones are equipped with On-Device AI technology to support the use of related functions. In this paper, we compare software tools that implement On-Device AI.