• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.028 seconds

Analysis of Effects of Autonomous Vehicle Market Share Changes on Expressway Traffic Flow Using IDM (IDM을 이용한 자율주행자동차 시장점유율 변화가 고속도로 교통류에 미치는 영향 분석)

  • Ko, Woori;Park, Sangmin;So, Jaehyun(Jason);Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.13-27
    • /
    • 2021
  • In this study, the impact of traffic flow on the market penetration rate of autonomous vehicles(AV) was analyzed using the data for the year 2020 of the Yongin IC~Yangji IC section of Yeongdong Expressway. For this analysis, a microscopic traffic simulation model VISSIM was utilized. To construct the longitudinal control of the AV, the Intelligent Driver Model(IDM) was built and applied, and the driving behavior was verified by comparison with a normal vehicle. An examination of the study results of mobility and safety according to the market penetration rate of the AV, showed that the network's mobility improves as the market penetration rate increases. However, from the point of view of safety, the network becomes unstable when normal vehicles and AVs are mixed, so there should be a focus on traffic management for ensuring safety in mixed traffic situations.

Recommendation Model for Battlefield Analysis based on Siamese Network

  • Geewon, Suh;Yukyung, Shin;Soyeon, Jin;Woosin, Lee;Jongchul, Ahn;Changho, Suh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a training method of a recommendation learning model that analyzes the battlefield situation and recommends a suitable hypothesis for the current situation. The proposed learning model uses the preference determined by comparing the two hypotheses as a label data to learn which hypothesis best analyzes the current battlefield situation. Our model is based on Siamese neural network architecture which uses the same weights on two different input vectors. The model takes two hypotheses as an input, and learns the priority between two hypotheses while sharing the same weights in the twin network. In addition, a score is given to each hypothesis through the proposed post-processing ranking algorithm, and hypotheses with a high score can be recommended to the commander in charge.

Analysis of the Unstructured Traffic Report from Traffic Broadcasting Network by Adapting the Text Mining Methodology (텍스트 마이닝을 적용한 한국교통방송제보 비정형데이터의 분석)

  • Roh, You Jin;Bae, Sang Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.3
    • /
    • pp.87-97
    • /
    • 2018
  • The traffic accident reports that are generated by the Traffic Broadcasting Networks(TBN) are unstructured data. It, however, has the value as some sort of real-time traffic information generated by the viewpoint of the drives and/or pedestrians that were on the roads, the time and spots, not the offender or the victim who caused the traffic accidents. However, the traffic accident reports, which are big data, were not applied to traffic accident analysis and traffic related research commonly. This study adopting text-mining technique was able to provide a clue for utilizing it for the impacts of traffic accidents. Seven years of traffic reports were grasped by this analysis. By analyzing the reports, it was possible to identify the road names, accident spot names, time, and to identify factors that have the greatest influence on other drivers due to traffic accidents. Authors plan to combine unstructured accident data with traffic reports for further study.

Optimize TOD Time-Division with Dynamic Time Warping Distance-based Non-Hierarchical Cluster Analysis (동적 타임 워핑 거리 기반 비 계층적 군집분석을 활용한 TOD 시간분할 최적화)

  • Hwang, Jae-Yeon;Park, Minju;Kim, Yongho;Kang, Woojin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.113-129
    • /
    • 2021
  • Recently, traffic congestion in the city is continuously increasing due to the expansion of the living area centered in the metropolitan area and the concentration of population in large cities. New road construction has become impossible due to the increase in land prices in downtown areas and limited sites, and the importance of efficient data-based road operation is increasingly emerging. For efficient road operation, it is essential to classify appropriate scenarios according to changes in traffic conditions and to operate optimal signals for each scenario. In this study, the Dynamic Time Warping model for cluster analysis of time series data was applied to traffic volume and speed data collected at continuous intersections for optimal scenario classification. We propose a methodology for composing an optimal signal operation scenario by analyzing the characteristics of the scenarios for each data used for classification.

A Study on Fuzzy Logic based Clustering Method for Radar Data Analysis (레이더 데이터 분석을 위한 Fuzzy Logic 기반 클러스터링 기법에 관한 연구)

  • Lee, Hansoo;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.217-222
    • /
    • 2015
  • Clustering is one of important data mining techniques known as exploratory data analysis and is being applied in various engineering and scientific fields such as pattern recognition, remote sensing, and so on. The method organizes data by abstracting underlying structure either as a grouping of individuals or as a hierarchy of groups. Weather radar observes atmospheric objects by utilizing reflected signals and stores observed data in corresponding coordinate. To analyze the radar data, it is needed to be separately organized precipitation and non-precipitation echo based on similarities. Thus, this paper studies to apply clustering method to radar data. In addition, in order to solve the problem when precipitation echo locates close to non-precipitation echo, fuzzy logic based clustering method which can consider both distance and other properties such as reflectivity and Doppler velocity is suggested in this paper. By using actual cases, the suggested clustering method derives better results than previous method in near-located precipitation and non-precipitation echo case.

The Intelligent Intrusion Detection Systems using Automatic Rule-Based Method (자동적인 규칙 기반 방법을 이용한 지능형 침입탐지시스템)

  • Yang, Ji-Hong;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.531-536
    • /
    • 2002
  • In this paper, we have applied Genetic Algorithms(GAs) to Intrusion Detection System(TDS), and then proposed and simulated the misuse detection model firstly. We have implemented with the KBD contest data, and tried to simulated in the same environment. In the experiment, the set of record is regarded as a chromosome, and GAs are used to produce the intrusion patterns. That is, the intrusion rules are generated. We have concentrated on the simulation and analysis of classification among the Data Mining techniques and then the intrusion patterns are produced. The generated rules are represented by intrusion data and classified between abnormal and normal users. The different rules are generated separately from three models "Time Based Traffic Model", "Host Based Traffic Model", and "Content Model". The proposed system has generated the update and adaptive rules automatically and continuously on the misuse detection method which is difficult to update the rule generation. The generated rules are experimented on 430M test data and almost 94.3% of detection rate is shown.3% of detection rate is shown.

Intelligent Anti-Money Laundering Systems Development for the Korea Financial Intelligence Unit

  • Shin Kyung-Shik;Kim Hyun-Jung;Lee In-Ho;Kim Hyo-Sin;Kim Jae-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.294-300
    • /
    • 2006
  • This case study shows constructing the knowledge-based system using a rule-based approach for detecting transactions regarding money laundering in the Korea Financial Intelligence Unit (KoFIU). To better manage the explosive increment of low risk suspicious transactions reporting from financial institutions and to conjugate data converged into the KoFIU from various organizations, the adoption of a knowledge-based system is definitely required. We designed and constructed the knowledge-based system for anti-money laundering by committing experts of each specific financial industry co-worked with a knowledge engineer. The outcome of the knowledge base implementation shows that the knowledge-based system is filtering STRs in the primary analysis step efficiently and so has made great contribution to improve efficiency and effectiveness of the analysis process. It can be said that establishing the foundation of the knowledge base under the entire framework of the knowledge-based system for consideration of knowledge creation and management is indeed valuable.

  • PDF

Deformation Monitoring and Prediction Technique of Existing Subway Tunnel: A Case Study of Guangzhou Subway in China

  • Qiu, Dongwei;Huang, He;Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.623-629
    • /
    • 2012
  • During the construction of crossing engineering one of the important measures to ensure the safety of subway operation is the implementation of deformation surveying to the existing subway tunnel. Guangzhou new subway line 2 engineering which crosses the existing tunnel is taken as the background. How to achieve intelligent and automatic deformation surveying forecast during the subway tunnel construction process is studied. Because large amount of surveying data exists in the subway construction, deformation analysis is difficult and prediction has low accuracy, a subway intelligent deformation prediction model based on the PBIL and support vector machine is proposed. The PBIL algorithm is used to optimize the exact key parameters combination of support vector machine though probability analysis and thereby the predictive ability of the model deformation is greatly improved. Through applications on the Guangzhou subway across deformation surveying deformation engineering the prediction method's predictive ability has high accuracy and the method has high practicality. It can support effective solution to the implementation of the comprehensive and accurate surveying and early warning under subway operation conditions with the environmental interference and complex deformation.

Questionnaire Results of Subjective Evaluation of Seal Robot at the National Museum of Science and Technology in Stockholm, Sweden

  • Shibata, Takanori;Wada, Kazuyoshi;Tanie, Kazuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.16-19
    • /
    • 2003
  • This paper describes research on mental commit robot that seeks a different direction from industrial robot, and that is not so rigidly dependent on objective measures such as accuracy and speed. The main goal of this research is to explore a new area in robotics, with an emphasis on human-robot interaction. In the previous research, we categories robots into four categories in terms of appearance. Then, we introduced a cat robot and a seal robot, and evaluated them by interviewing many people. The results showed that physical interaction improved subjective evaluation. Moreover, a priori knowledge of a subject has much influence into subjective interpretation and evaluation of mental commit robot. In this paper, 133 subjects evaluated the seal robot, Paro by questionnaires in an exhibition at the National Museum of Science and Technology in Stockholm, Sweden. This paper reports the results of statistical analysis of evaluation data.

  • PDF

Study on the Development of effective data transmission Scheme based on Wavelet and PCA (Wavelet 과 PCA 기법을 이용한 효율적 데이터 전송기법 개발에 관한 연구)

  • 육의수;한윤종;김성호
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.525-528
    • /
    • 2004
  • 최근 인터넷 및 무선 통신기술의 광범위한 보급으로 인해 현장 계측 데이터 등과 같은 중요 데이터를 인터넷을 통해 실시간으로 수신 가능케 하는 다양한 형태의 웹 기반 원격 모니터링 시스템이 설계되고 있다. 이러한 웹 모니터링 시스템은 기본적으로 짧은 주기마다 측정된 데이터를 원격의 서버로 전송하는 것이 바람직하나 과도한 통신비 문제로 인해 효율적인 시스템 운영이 어렵다는 문제점을 갖는다. 따라서 본 연구에서는 측정데이터의 변화를 효율적으로 검출할 수 있는 PCA(Principle Component Analysis) 기법과 데이터 압축에 탁월한 특성을 갖는 wavelet 기법을 융합한 새로운 형태의 웹 기반 원격모니터링용 데이터 전송기법을 제안하고 실제 데이터에 적용하여 봄으로써 제안된 기법의 유용성을 확인하고자 한다.

  • PDF