• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.028 seconds

A Study on the Introduction of Intelligent Document Processing and Change of Record Management (지능형 문서처리 도입과 기록관리 변화에 관한 연구)

  • Ryu, Hanjo;Lee, Kyungnam;Hwang, Jinhyun;Yim, Jinhee
    • The Korean Journal of Archival Studies
    • /
    • no.68
    • /
    • pp.41-72
    • /
    • 2021
  • In order to analyze big data, documents should be converted to a open standard format to increase machine readability. It also need natural language processing tools. This study focused on the background of intelligent document processing and the status of research in the public sector, and predicted the changes in work that intelligent document processing would bring. This study noted the changes that intelligent document processing would bring to the archival work, and also considered changes in the role of archivist and their required competencies. Changes in archival work could be anticipated across a wide range of Records Management work and Archives Management work. In particular, it was expected to have a significant impact on the automation of repetitive archival tasks or the description and utilization of records. This study proposed the need to prepare new archival work procedures, methods, and necessary competencies in response to these change in archival work.

Analysis of Urban Traffic Network Structure based on ITS Big Data (ITS 빅데이터를 활용한 도시 교통네트워크 구조분석)

  • Kim, Yong Yeon;Lee, Kyung-Hee;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2017
  • Intelligent transportation system (ITS) has been introduced to maximize the efficiency of operation and utilization of the urban traffic facilities and promote the safety and convenience of the users. With the expansion of ITS, various traffic big data such as road traffic situation, traffic volume, public transportation operation status, management situation, and public traffic use status have been increased exponentially. In this paper, we derive structural characteristics of urban traffic according to the vehicle flow by using big data network analysis. DSRC (Dedicated Short Range Communications) data is used to construct the traffic network. The results can help to understand the complex urban traffic characteristics more easily and provide basic research data for urban transportation plan such as road congestion resolution plan, road expansion plan, and bus line/interval plan in a city.

  • PDF

Estimation of Mass Rapid Transit Passenger's Train Choice Using a Mixture Distribution Analysis (통행시간 기반 혼합분포모형 분석을 통한 도시철도 승객의 급행 탑승 여부 추정 연구)

  • Jang, Jinwon;Yoon, Hosang;Park, Dongjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.1-17
    • /
    • 2021
  • Identifying the exact train and the type of train boarded by passengers is practically cumbersome. Previous studies identified the trains boarded by each passenger by matching the Automated Fare Collection (AFC) data and the train schedule diagram. However, this approach has been shown to be inefficient as the exact train boarded by a considerable number of passengers cannot be accurately determined. In this study, we demonstrate that the AFC data - diagram matching technique could not estimate 28% of the train type selected by passengers using the Seoul Metro line no.9. To obtain more accurate results, this paper developed a two-step method for estimating the train type boarded by passengers by applying the AFC data - diagram matching method followed by a mixture distribution analysis. As a result of the analysis, we derived reasonable express train use/non-use passenger classification points based on 298 origin-destination pairs that satisfied the verification criteria of this study.

Well Log Analysis using Intelligent Reservoir Characterization (지능형 저류층 특성화 기법을 이용한 물리검층 자료 해석)

  • Lim Song-Se
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • Petroleum reservoir characterization is a process for quantitatively describing various reservoir properties in spatial variability using all the available field data. Porosity and permeability are the two fundamental reservoir properties which relate to the amount of fluid contained in a reservoir and its ability to flow. These properties have a significant impact on petroleum fields operations and reservoir management. In un-cored intervals and well of heterogeneous formation, porosity and permeability estimation from conventional well logs has a difficult and complex problem to solve by conventional statistical methods. This paper suggests an intelligent technique using fuzzy logic and neural network to determine reservoir properties from well logs. Fuzzy curve analysis based on fuzzy logics is used for selecting the best related well logs with core porosity and permeability data. Neural network is used as a nonlinear regression method to develop transformation between the selected well logs and core analysis data. The intelligent technique is demonstrated with an application to the well data in offshore Korea. The results show that this technique can make more accurate and reliable properties estimation compared with previously used methods. The intelligent technique can be utilized a powerful tool for reservoir characterization from well logs in oil and natural gas development projects.

Traffic Speed Prediction Based on Graph Neural Networks for Intelligent Transportation System (지능형 교통 시스템을 위한 Graph Neural Networks 기반 교통 속도 예측)

  • Kim, Sunghoon;Park, Jonghyuk;Choi, Yerim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.70-85
    • /
    • 2021
  • Deep learning methodology, which has been actively studied in recent years, has improved the performance of artificial intelligence. Accordingly, systems utilizing deep learning have been proposed in various industries. In traffic systems, spatio-temporal graph modeling using GNN was found to be effective in predicting traffic speed. Still, it has a disadvantage that the model is trained inefficiently due to the memory bottleneck. Therefore, in this study, the road network is clustered through the graph clustering algorithm to reduce memory bottlenecks and simultaneously achieve superior performance. In order to verify the proposed method, the similarity of road speed distribution was measured using Jensen-Shannon divergence based on the analysis result of Incheon UTIC data. Then, the road network was clustered by spectrum clustering based on the measured similarity. As a result of the experiments, it was found that when the road network was divided into seven networks, the memory bottleneck was alleviated while recording the best performance compared to the baselines with MAE of 5.52km/h.

Smart Livestock Research and Technology Trend Analysis based on Intelligent Information Technology to improve Livestock Productivity and Livestock Environment (축산물 생산성 향상 및 축산 환경 개선을 위한 지능정보기술 기반 스마트 축사 연구 및 기술 동향 분석)

  • Kim, Cheol-Rim;Kim, Seungchoen
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.133-139
    • /
    • 2022
  • Recently, livestock farms in Korea are introducing data-based technologies to improve productivity, such as livestock environment and breeding management, safe livestock production, and animal welfare. In addition, the government has been conducting a smart livestock distribution project since 2017 through the modernization of ICT-based livestock facilities in order to improve the productivity of livestock products and improve the livestock environment as a policy. However, the current smart livestock house has limitations in connection, diversity, and integration between monitoring and control. Therefore, in order to intelligently systemize all processes of livestock with intelligent algorithms and remote control in order to link and integrate various monitoring and control, the Internet of Things, big data, artificial intelligence, cloud computing, and mobile It is necessary to develop a smart livestock system. In this study, domestic and foreign research trends related to smart livestock based on intelligent information technology were introduced and the limitations of domestic application of advanced technologies were analyzed. Finally, future intelligent information technology applicable to the livestock field was examined.

A Study on the Interconnection between National Disaster Management System and Private Disaster Prevention IT Technology through Application (국가재난관리 시스템과 민간 방재IT기술의 지능정보기술 적용 사례고찰을 통한 상호 연계에 관한 연구)

  • Kim, Jaepyo;Kim, Seungcheon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.15-22
    • /
    • 2020
  • In order to strengthen the disaster prevention phase and the management of social disasters, we will examine the plan of To-Be disaster management system interconnected by using intelligent information technologies such as IoT, Cloud, Big Data, Mobile and AI. The disaster management system can be upgraded by constructing an intelligent infrastructure based on Big Data analysis of the disaster signals before and after the disasters generated by private mobile and IoT. Big Data of disaster Signals can be customized to users in a timely manner through AI methodologies of supervised and unsupervised learning and reinforcement training. In the long term, it is expected that not only will the capacity of disaster response be improved, but the management ability centering on prevention will be enhanced as well.

A Study on the Strategic Application of National Defense Data for the Construction of Smart Forces in the 4th IR (4차 산업혁명시대 스마트 강군 건설을 위한 국방 데이터의 전략적 활용 방안연구)

  • Kim, Seyong;Kim, Junsang;Kang, Seokwon
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.113-123
    • /
    • 2020
  • The fourth industrial revolution can be called the hyper-connected-based intelligent revolution triggered by advanced information technology and intelligent technology, and the basis for implementing these technologies is 'data'. This study proposes a way to strategically use data in order to lead this intelligent revolution in the defense area. First of all, implications through analysis of domestic and international trends and prior research and current status of defense data management were analyzed, and four directions for development were presented. If the government composes conditions for building, releasing, sharing, distribution, and convergence of defense data considering the environment of national defense in the future, it is expected that it will serve as a foundation and a shortcut to be a digitalized strong military through smart defense innovation in the era of the fourth industrial revolution.

Concept Design for the Intelligent Surveillance System for Urban Transit (도시철도 지능형 종합감시시스템 개념설계)

  • An, Tae-Ki;Shin, Jeong-Ryol;Lee, Woo-Dong;Han, Seok-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.653-658
    • /
    • 2008
  • Service areas in the urban transit need to construct the intelligent integrated surveillance system, because they are the public places that many people get together at one time. In past, analogue, closed-circuit televisions and analogue video recorders are used to construct the surveillance system. Now, a lot parts of the analogue systems that depend on the images have been changed to the complicated system, which consists of sensors and images and also, to be digitalized. In past, the surveillance system was used as an inspection devices to examine the spots after happening some events. But, with a high level of the computer and communication technologies, it is possible that the digitalized data leads the intelligence systems to prevent some accidents by using the various analysis techniques. And the data could be used to decide surveillance policies and provide some information on the safety and management policies as well as surveillance policies. In this paper, we define the intelligent surveillance system and suggest the major functions of the system. Also, we suggest the fundamental functions that every part should get and describe the way to develop the system.

  • PDF

Research on Making a Disaster Situation Management Intelligent Based on User Demand (사용자 수요 기반의 재난 상황관리 지능화에 관한 연구)

  • Seon-Hwa Choi;Jong-Yeong Son;Mi-Song Kim;Heewon Yoon;Shin-Hye Ryu;Sang Hoon Yoon
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.811-825
    • /
    • 2023
  • In accordance with the government's stance of actively promoting intelligent administrative service policies through data utilization, in the disaster and safety management field, it also is proceeding with disaster and safety management policies utilizing data and constructing systems for responding efficiently to new and complex disasters and establishing scientific and systematic safety policies. However, it is difficult to quickly and accurately grasp the on-site situation in the event of a disaster, and there are still limitations in providing information necessary for situation judgment and response only by displaying vast data. This paper focuses on deriving specific needs to make disaster situation management work more intelligent and efficient by utilizing intelligent information technology. Through individual interviews with workers at the Central Disaster and Safety Status Control Center, we investigated the scope of disaster situation management work and the main functions and usability of the geographic information system (GIS)-based integrated situation management system by practitioners in this process. In addition, the data built in the system was reclassified according to purpose and characteristics to check the status of data in the GIS-based integrated situation management system. To derive needed to make disaster situation management more intelligent and efficient by utilizing intelligent information technology, 3 strategies were established to quickly and accurately identify on-site situations, make data-based situation judgments, and support efficient situation management tasks, and implementation tasks were defined and task priorities were determined based on the importance of implementation tasks through analytic hierarchy process (AHP) analysis. As a result, 24 implementation tasks were derived, and to make situation management efficient, it is analyzed that the use of intelligent information technology is necessary for collecting, analyzing, and managing video and sensor data and tasks that can take a lot of time of be prone to errors when performed by humans, that is, collecting situation-related data and reporting tasks. We have a conclusion that among situation management intelligence strategies, we can perform to develop technologies for strategies being high important score, that is, quickly and accurately identifying on-site situations and efficient situation management work support.