• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.033 seconds

Defect Analysis of the SBR Wastewater Treatment Plant for Unmanned Automation Based on Time-series Data Mining (시계열 데이터 마이닝을 이용한 하수처리 연속 회분식 반응기 장비 진단)

  • Bae, Hyeon;Choi, Dae-Won;Cheon, Seong-Pyo;Kim, Sung-Shin;Kim, Ye-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.431-436
    • /
    • 2005
  • This paper describes how to diagnose SBR plant equipment using time-series data mining. It shows the equipment diagnostics based upon vibration signals that are acquired front each device lot process control. Data transform techniques including two data preprocessing skills and data mining methods were employed in the data analysis. The proposed method is not only suitable for SBR equipment, but is also suitable for other Industrial devices. The experimental results performed on a lab-scale SBR plant show a good equip-ment-management performance.

Quantitative Analysis of Safety Improvement on Smart Roads (스마트도로 안전성 향상 효과의 정량화 연구)

  • Chang, Hyun-Ho;Baek, Seung-Kirl;Oh, Sung-Ho;Kim, Ho-Jeung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.44-54
    • /
    • 2011
  • Intelligent transport services on smart roads tend to have a problem at the stage of benefit-cost analysis that can not secure economic feasibility of the new services which increase early investment cost on building its infrastructure. It is expected that the number of road accidents, 'Incident/Accident', will decline through various safety services using intelligent safety facilities, intelligent transport management and so on, and that traffic congestion will also decrease. The effect of traffic congestion reduction could be the benefit by safety improvement, however current investment-analysis process in Korea does not appropriate it as a benefit. This study estimated road blocking time with 'Incident/Accident' classification and highway accident data of past three years. It also developed a generalized model by a regression analysis with a microscopical simulation. Furthermore, it suggested necessary units on quantitative analysis in order to make the developed model applicable to investment evaluation. As a result of applying the developed model to Smart-Highway Project, it showed that total safety improvement benefit is about 139 billion dollars over 30 years when it is supposed that accident decreasing rate by smart safety facilities is 10%.

Intelligent Electronic Shoppingmall with Bundle Product Suggestions for Fisheries (상차림중심의 지능형 수산물 인터넷 쇼핑몰 개발)

  • 정대율
    • The Journal of Information Systems
    • /
    • v.10 no.2
    • /
    • pp.5-32
    • /
    • 2001
  • The main goal of this research is at the development of a bundle product suggestion sub-system of an internet shopping mall for fishery products, which can reduce the search cost of user. To achieve the goal, we first study tie key factors of successful direct commerce for fishery products, and second, we design a bundle product suggestion module and its sub-module. For this, we identify the objectives of system, and write out the necessary functions of the system and models(process model, data model, dynamic model) through the analysis of user requirements. Based on the functions and models, we design user interfaces, database, processes, and knowledge base. In designing knowledge base and inferencing strategy, we consider two intelligent agent approach(optimal algorithms, heuristic rules) and suggest one more approach(case-based reasoning). The intelligent agent can be used in enhancing the suggestion of multiple fishery product simultaneously. The system analysis and design documents presented as the research results can be used to provide good guidelines to the companies who consider developing an production suggestion agents.

  • PDF

Intelligent Diagnosis System for DGA Using Fuzzy Pattern Classification and Neural Network (퍼지 패턴 분류와 뉴럴 네트워크를 이용한 지능형 유중가스 판정 시스템)

  • Cho, Sung-Min;Kweon, Dong-Jin;Nam, Chang-Hyun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2084-2090
    • /
    • 2007
  • The DGA (Dissolved Gases Analysis) technique has been widely using for fault diagnosis of the power transformers. Some electric power utility company establishes the criteria of DGA to improve reliability, because of difference of operation environment and design of power transformer. In this paper, we introduce intelligent diagnosis system for DGA result of KEPCO (Korea Electric Power Cooperation). This system can classify patterns type of gases ratio that frequently occurs in recent result of gases analysis using Fuzzy Inference. The classification of Patterns let us know that major causes of gases generation based on type of patterns. Finally, Neural Network based on patterns diagnose transformer. NN was trained using result data of DGA of actually faulted transformers recently. Result of intelligent diagnosis system is right well in comparison with actual inner inspection of transformers.

Abnormal Object Detection-based Video Synopsis Framework in Multiview Video (다시점 영상에 대한 이상 물체 탐지 기반 영상 시놉시스 프레임워크)

  • Ingle, Palash Yuvraj;Yu, Jin-Yong;Kim, Young-Gab
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.213-216
    • /
    • 2022
  • There has been an increase in video surveillance for public safety and security, which increases the video data, leading to analysis, and storage issues. Furthermore, most surveillance videos contain an empty frame of hours of video footage; thus, extracting useful information is crucial. The prominent framework used in surveillance for efficient storage and analysis is video synopsis. However, the existing video synopsis procedure is not applicable for creating an abnormal object-based synopsis. Therefore, we proposed a lightweight synopsis methodology that initially detects and extracts abnormal foreground objects and their respective backgrounds, which is stitched to construct a synopsis.

A Study on the 4th Industrial Revolution and E-Government Security Strategy -In Terms of the Cyber Security Technology of Intelligent Government- (제4차 산업혁명과 전자정부 보안연구 -지능형 정부의 빅데이터 사이버보안기술 측면에서-)

  • Lee, Sang-Yun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.369-376
    • /
    • 2019
  • This paper studies desirable form of future e-government in terms of intelligent government research in response to new intelligent cyber security services in the fourth industrial revolution. Also, the strategic planning of the future e-government has been contemplated in terms of the centralization and intellectualization which are significant characteristics of the fourth industrial revolution. The new system construction which is applied with security analysis technology using big data through advanced relationship analysis is suggested in the paper. The establishment of the system, such as SIEM(Security Information & Event Management), which anticipatively detects security threat by using log information through big data analysis is suggested in the paper. Once the suggested system is materialized, it will be possible to expand big data object, allow centralization in terms of e-government security in the fourth industrial revolution, boost data process, speed and follow-up response, which allows the system to function anticipatively.

A Case Study on Smart Factory Extensibility for Small and Medium Enterprises (중소기업 스마트 공장 확장성 사례연구)

  • Kim, Sung-Min;Ahn, Jaekyoung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.43-57
    • /
    • 2021
  • Smart factories can be defined as intelligent factories that produce products through IoT-based data. In order to build and operate a smart factory, various new technologies such as CPS, IoT, Big Data, and AI are to be introduced and utilized, while the implementation of a MES system that accurately and quickly collects equipment data and production performance is as important as those new technologies. First of all, it is very essential to build a smart factory appropriate to the current status of the company. In this study, what are the essential prerequisite factors for successfully implementing a smart factory was investigated. A case study has been carried out to illustrate the effect of implementing ERP and MES, and to examine the extensibilities into a smart factory. ERP and MES as an integrated manufacturing information system do not imply a smart factory, however, it has been confirmed that ERP and MES are necessary conditions among many factors for developing into a smart factory. Therefore, the stepwise implementation of intelligent MES through the expansion of MES function was suggested. An intelligent MES that is capable of making various decisions has been investigated as a prototyping system by applying data mining techniques and big data analysis. In the end, in order for small and medium enterprises to implement a low-cost, high-efficiency smart factory, the level and goal of the smart factory must be clearly defined, and the transition to ERP and MES-based intelligent factories could be a potential alternative.

Intelligent Traffic Prediction by Multi-sensor Fusion using Multi-threaded Machine Learning

  • Aung, Swe Sw;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.430-439
    • /
    • 2016
  • Estimation and analysis of traffic jams plays a vital role in an intelligent transportation system and advances safety in the transportation system as well as mobility and optimization of environmental impact. For these reasons, many researchers currently mainly focus on the brilliant machine learning-based prediction approaches for traffic prediction systems. This paper primarily addresses the analysis and comparison of prediction accuracy between two machine learning algorithms: Naïve Bayes and K-Nearest Neighbor (K-NN). Based on the fact that optimized estimation accuracy of these methods mainly depends on a large amount of recounted data and that they require much time to compute the same function heuristically for each action, we propose an approach that applies multi-threading to these heuristic methods. It is obvious that the greater the amount of historical data, the more processing time is necessary. For a real-time system, operational response time is vital, and the proposed system also focuses on the time complexity cost as well as computational complexity. It is experimentally confirmed that K-NN does much better than Naïve Bayes, not only in prediction accuracy but also in processing time. Multi-threading-based K-NN could compute four times faster than classical K-NN, whereas multi-threading-based Naïve Bayes could process only twice as fast as classical Bayes.

Dextrous sensor hand for the intelligent assisting system - IAS

  • Hashimoto, Hideki;Buss, Martin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.124-129
    • /
    • 1992
  • The goal of the proposed Intelligent Assisting System - IAS is to assist human operators in an intelligent way, while leaving decision and goal planning instances for the human. To realize the IAS the very important issue of manipulation skill identification and analysis has to be solved, which then is stored in a Skill Data Base. Using this data base the IAS is able to perform complex manipulations on the motion control level and to assist the human operator flexibly. We propose a model for manipulation skill based on the dynamics of the grip transformation matrix, which describes the dynamic transformation between object space and finger joint space. Interaction with a virtual world simulator allows the calculation and feedback of appropriate forces through controlled actuators of the sensor glove with 10 degrees-of-freedom. To solve the sensor glove calibration problem, we learn the nonlinear calibration mapping by an artificial neural network(ANN). In this paper we also describe the experimental system setup of the skill acquisition and transfer system as a first approach to the IAS. Some simple manipulation examples and simulation results show the feasibility of the proposed manipulation skill model.

  • PDF

The Impact of Redundancy and Teamwork on Resilience Engineering Factors by Fuzzy Mathematical Programming and Analysis of Variance in a Large Petrochemical Plant

  • Azadeh, Ali;Salehi, Vahid;Mirzayi, Mahsa
    • Safety and Health at Work
    • /
    • v.7 no.4
    • /
    • pp.307-316
    • /
    • 2016
  • Background: Resilience engineering (RE) is a new paradigm that can control incidents and reduce their consequences. Integrated RE includes four new factors-self-organization, teamwork, redundancy, and fault-tolerance-in addition to conventional RE factors. This study aimed to evaluate the impacts of these four factors on RE and determine the most efficient factor in an uncertain environment. Methods: The required data were collected through a questionnaire in a petrochemical plant in June 2013. The questionnaire was completed by 115 respondents including 37 managers and 78 operators. Fuzzy data envelopment analysis was used in different ${\alpha}$-cuts in order to calculate the impact of each factor. Analysis of variance was employed to compare the efficiency score means of the four abovementioned factors. Results: The results showed that as ${\alpha}$ approached 0 and the system became fuzzier (${\alpha}=0.3$ and ${\alpha}=0.1$), teamwork played a significant role and had the highest impact on the resilient system. In contrast, as ${\alpha}$ approached 1 and the fuzzy system went toward a certain mode (${\alpha}=0.9$ and ${\alpha}=1$), redundancy had a vital role in the selected resilient system. Therefore, redundancy and teamwork were the most efficient factors. Conclusion: The approach developed in this study could be used for identifying the most important factors in such environments. The results of this study may help managers to have better understanding of weak and strong points in such industries.