• Title/Summary/Keyword: Intelligent Data Analysis

Search Result 1,456, Processing Time 0.027 seconds

Vehicle Acceleration and Vehicle Spacing Calculation Method Used YOLO (YOLO기법을 사용한 차량가속도 및 차두거리 산출방법)

  • Jeong-won Gil;Jae-seong Hwang;Jae-Kyung Kwon;Choul-ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.82-96
    • /
    • 2024
  • While analyzing traffic flow, speed, traffic volume, and density are important macroscopic indicators, and acceleration and spacing are the important microscopic indicators. The speed and traffic volume can be collected with the currently installed traffic information collection devices. However, acceleration and spacing data are necessary for safety and autonomous driving but cannot be collected using the current traffic information collection devices. 'You Look Only Once'(YOLO), an object recognition technique, has excellent accuracy and real-time performance and is used in various fields, including the transportation field. In this study, to measure acceleration and spacing using YOLO, we developed a model that measures acceleration and spacing through changes in vehicle speed at each interval and the differences in the travel time between vehicles by setting the measurement intervals closely. It was confirmed that the range of acceleration and spacing is different depending on the traffic characteristics of each point, and a comparative analysis was performed according to the reference distance and screen angle to secure the measurement rate. The measurement interval was 20m, and the closer the angle was to a right angle, the higher the measurement rate. These results will contribute to the analysis of safety by intersection and the domestic vehicle behavior model.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

A study on detective story authors' style differentiation and style structure based on Text Mining (텍스트 마이닝 기법을 활용한 고전 추리 소설 작가 간 문체적 차이와 문체 구조에 대한 연구)

  • Moon, Seok Hyung;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.89-115
    • /
    • 2019
  • This study was conducted to present the stylistic differences between Arthur Conan Doyle and Agatha Christie, famous as writers of classical mystery novels, through data analysis, and further to present the analytical methodology of the study of style based on text mining. The reason why we chose mystery novels for our research is because the unique devices that exist in classical mystery novels have strong stylistic characteristics, and furthermore, by choosing Arthur Conan Doyle and Agatha Christie, who are also famous to the general reader, as subjects of analysis, so that people who are unfamiliar with the research can be familiar with them. The primary objective of this study is to identify how the differences exist within the text and to interpret the effects of these differences on the reader. Accordingly, in addition to events and characters, which are key elements of mystery novels, the writer's grammatical style of writing was defined in style and attempted to analyze it. Two series and four books were selected by each writer, and the text was divided into sentences to secure data. After measuring and granting the emotional score according to each sentence, the emotions of the page progress were visualized as a graph, and the trend of the event progress in the novel was identified under eight themes by applying Topic modeling according to the page. By organizing co-occurrence matrices and performing network analysis, we were able to visually see changes in relationships between people as events progressed. In addition, the entire sentence was divided into a grammatical system based on a total of six types of writing style to identify differences between writers and between works. This enabled us to identify not only the general grammatical writing style of the author, but also the inherent stylistic characteristics in their unconsciousness, and to interpret the effects of these characteristics on the reader. This series of research processes can help to understand the context of the entire text based on a defined understanding of the style, and furthermore, by integrating previously individually conducted stylistic studies. This prior understanding can also contribute to discovering and clarifying the existence of text in unstructured data, including online text. This could help enable more accurate recognition of emotions and delivery of commands on an interactive artificial intelligence platform that currently converts voice into natural language. In the face of increasing attempts to analyze online texts, including New Media, in many ways and discover social phenomena and managerial values, it is expected to contribute to more meaningful online text analysis and semantic interpretation through the links to these studies. However, the fact that the analysis data used in this study are two or four books by author can be considered as a limitation in that the data analysis was not attempted in sufficient quantities. The application of the writing characteristics applied to the Korean text even though it was an English text also could be limitation. The more diverse stylistic characteristics were limited to six, and the less likely interpretation was also considered as a limitation. In addition, it is also regrettable that the research was conducted by analyzing classical mystery novels rather than text that is commonly used today, and that various classical mystery novel writers were not compared. Subsequent research will attempt to increase the diversity of interpretations by taking into account a wider variety of grammatical systems and stylistic structures and will also be applied to the current frequently used online text analysis to assess the potential for interpretation. It is expected that this will enable the interpretation and definition of the specific structure of the style and that various usability can be considered.

The effect of Big-data investment on the Market value of Firm (기업의 빅데이터 투자가 기업가치에 미치는 영향 연구)

  • Kwon, Young jin;Jung, Woo-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.99-122
    • /
    • 2019
  • According to the recent IDC (International Data Corporation) report, as from 2025, the total volume of data is estimated to reach ten times higher than that of 2016, corresponding to 163 zettabytes. then the main body of generating information is moving more toward corporations than consumers. So-called "the wave of Big-data" is arriving, and the following aftermath affects entire industries and firms, respectively and collectively. Therefore, effective management of vast amounts of data is more important than ever in terms of the firm. However, there have been no previous studies that measure the effects of big data investment, even though there are number of previous studies that quantitatively the effects of IT investment. Therefore, we quantitatively analyze the Big-data investment effects, which assists firm's investment decision making. This study applied the Event Study Methodology, which is based on the efficient market hypothesis as the theoretical basis, to measure the effect of the big data investment of firms on the response of market investors. In addition, five sub-variables were set to analyze this effect in more depth: the contents are firm size classification, industry classification (finance and ICT), investment completion classification, and vendor existence classification. To measure the impact of Big data investment announcements, Data from 91 announcements from 2010 to 2017 were used as data, and the effect of investment was more empirically observed by observing changes in corporate value immediately after the disclosure. This study collected data on Big Data Investment related to Naver 's' News' category, the largest portal site in Korea. In addition, when selecting the target companies, we extracted the disclosures of listed companies in the KOSPI and KOSDAQ market. During the collection process, the search keywords were searched through the keywords 'Big data construction', 'Big data introduction', 'Big data investment', 'Big data order', and 'Big data development'. The results of the empirically proved analysis are as follows. First, we found that the market value of 91 publicly listed firms, who announced Big-data investment, increased by 0.92%. In particular, we can see that the market value of finance firms, non-ICT firms, small-cap firms are significantly increased. This result can be interpreted as the market investors perceive positively the big data investment of the enterprise, allowing market investors to better understand the company's big data investment. Second, statistical demonstration that the market value of financial firms and non - ICT firms increases after Big data investment announcement is proved statistically. Third, this study measured the effect of big data investment by dividing by company size and classified it into the top 30% and the bottom 30% of company size standard (market capitalization) without measuring the median value. To maximize the difference. The analysis showed that the investment effect of small sample companies was greater, and the difference between the two groups was also clear. Fourth, one of the most significant features of this study is that the Big Data Investment announcements are classified and structured according to vendor status. We have shown that the investment effect of a group with vendor involvement (with or without a vendor) is very large, indicating that market investors are very positive about the involvement of big data specialist vendors. Lastly but not least, it is also interesting that market investors are evaluating investment more positively at the time of the Big data Investment announcement, which is scheduled to be built rather than completed. Applying this to the industry, it would be effective for a company to make a disclosure when it decided to invest in big data in terms of increasing the market value. Our study has an academic implication, as prior research looked for the impact of Big-data investment has been nonexistent. This study also has a practical implication in that it can be a practical reference material for business decision makers considering big data investment.

An Analysis of Information Visualization Problems using User Interface Design Principles (이용자 인터페이스 설계 원칙에 의한 정보시각화 시스템 평가 및 문제점 분석)

  • Lee, Jee-Yeon
    • Journal of Information Management
    • /
    • v.34 no.2
    • /
    • pp.67-88
    • /
    • 2003
  • There have been increased interests in information visualization. Information visualization has been considered as a way to summarize textual data so that the users can access large amount of data more efficiently and effectively. However, many information visualization techniques stem from scientific visualization techniques, which might be difficult for the regular users to understand. More importantly, the system models used by most of the information visualization techniques do not have real world counterpart. For example, most of the users do not represent or process the textual data in terms of fisheye view or a topological map. This means that there is no affordance on the current information visualization systems from the users point of view. In this paper, we analyzed this problem by using the user interface design principles to point out what lacks in the current information visualization systems. More specifically, we have applied Nielson's Heuristic Evaluation technique to review four representative information visualization techniques. The analysis results confirmed our original hypothesis on why the current information visualization systems are not part of the mainstream information systems. Finally, we suggested to invest more efforts in improving the currently prevalent and familiar bullet list type textual information presentation method based on the usability studies and the intelligent content analysis.

Explainable Artificial Intelligence Applied in Deep Learning for Review Helpfulness Prediction (XAI 기법을 이용한 리뷰 유용성 예측 결과 설명에 관한 연구)

  • Dongyeop Ryu;Xinzhe Li;Jaekyeong Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.35-56
    • /
    • 2023
  • With the development of information and communication technology, numerous reviews are continuously posted on websites, which causes information overload problems. Therefore, users face difficulty in exploring reviews for their decision-making. To solve such a problem, many studies on review helpfulness prediction have been actively conducted to provide users with helpful and reliable reviews. Existing studies predict review helpfulness mainly based on the features included in the review. However, such studies disable providing the reason why predicted reviews are helpful. Therefore, this study aims to propose a methodology for applying eXplainable Artificial Intelligence (XAI) techniques in review helpfulness prediction to address such a limitation. This study uses restaurant reviews collected from Yelp.com to compare the prediction performance of six models widely used in previous studies. Next, we propose an explainable review helpfulness prediction model by applying the XAI technique to the model with the best prediction performance. Therefore, the methodology proposed in this study can recommend helpful reviews in the user's purchasing decision-making process and provide the interpretation of why such predicted reviews are helpful.

An analysis of public perception on Artificial Intelligence(AI) education using Big Data: Based on News articles and Twitter (빅데이터 분석을 통해 본 AI교육에 대한 사회적 인식: 뉴스기사와 트위터를 중심으로)

  • Lee, Sang-Soog;Yoo, Inhyeok;Kim, Jinhee
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.9-16
    • /
    • 2020
  • The purpose of this study is to understand the public needs for AI education actively promoted and supported by the current government. In doing so, 11 metropolitan news articles and Twitter posts regarding AI education that have been posted from January 1, 2018 to December 31, 2019 were collected. Then, word frequency analysis using TF(Term Frequency) method and LDA(Latent Dirichlet Allocation) method of topic modeling analysis were conducted. The topics of the news articles turn out to be a macroscopic policy support such as 'training female manpower in the AI field' and 'curriculum reform of university and K-12', whereas the topics of twitter delineate more detailed social perception on future society, such as future competencies and pedagogical methods, including 'coexistence with intelligent robots', 'coding education', and 'humane education competence development'. The findings are expected to be used to suggest the implications for the composition and management of AI curriculum as well as the basic framework of human resources development in the future industry.

Study on User Characteristics based on Conversation Analysis between Social Robots and Older Adults: With a focus on phenomenological research and cluster analysis (소셜 로봇과 노년층 사용자 간 대화 분석 기반의 사용자 특성 연구: 현상학적 분석 방법론과 군집 분석을 중심으로)

  • Na-Rae Choi;Do-Hyung Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.211-227
    • /
    • 2023
  • Personal service robots, a type of social robot that has emerged with the aging population and technological advancements, are undergoing a transformation centered around technologies that can extend independent living for older adults in their homes. For older adults to accept and use social robot innovations in their daily lives on a long-term basis, it is crucial to have a deeper understanding of user perspectives, contexts, and emotions. This research aims to comprehensively understand older adults by utilizing a mixed-method approach that integrates quantitative and qualitative data. Specifically, we employ the Van Kaam phenomenological methodology to group conversations into nine categories based on emotional cues and conversation participants as key variables, using voice conversation records between older adults and social robots. We then personalize the conversations based on frequency and weight, allowing for user segmentation. Additionally, we conduct profiling analysis using demographic data and health indicators obtained from pre-survey questionnaires. Furthermore, based on the analysis of conversations, we perform K-means cluster analysis to classify older adults into three groups and examine their respective characteristics. The proposed model in this study is expected to contribute to the growth of businesses related to understanding users and deriving insights by providing a methodology for segmenting older adult s, which is essential for the future provision of social robots with caregiving functions in everyday life.

Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC (웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로)

  • Jun, Seung-Pyo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.93-111
    • /
    • 2013
  • As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.

5GHz Wi-Fi Design and Analysis for Vehicle Network Utilization (차량용 네트워크 활용을 위한 5GHz WiFi 설계 및 분석)

  • Yu, Hwan-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.18-25
    • /
    • 2020
  • With the development of water internet technology, data communication between objects is expanding. Research related to data communication technology between vehicles that incorporates related technologies into vehicles has been actively conducted. For data communication between mobile terminals, data stability, reliability, and real-time performance must be guaranteed. The 5 GHz Wi-Fi band, which is advantageous in bandwidth, communications speed, and wireless saturation of the wireless network, was selected as the data communications network between vehicles. This study analyzes how to design and implement a 5 GHz Wi-Fi network in a vehicle network. Considering the characteristics of the mobile communication terminal device, a continuous variable communications structure is proposed to enable high-speed data switching. We simplify the access point access procedure to reduce the latency between wireless terminals. By limiting the Transmission Control Protocol Internet Protocol (TCP/IP)-based Dynamic Host Configuration Protocol (DHCP) server function and implementing it in a broadcast transmission protocol method, communication delay between terminal devices is improved. Compared to the general commercial Wi-Fi communication method, the connection operation and response speed have been improved by five seconds or more. Utilizing this method can be applied to various types of event data communication between vehicles. It can also be extended to wireless data-based intelligent road networks and systems for autonomous driving.