• Title/Summary/Keyword: Intelligent Control System

Search Result 2,854, Processing Time 0.035 seconds

A Novel Design of the Distributed Fire Alarm Control System by Developing Intelligent Control Modules with LonTalk Protocol (지능형제어기를 이용한 분산 방계시스템에 관한 연구)

  • 홍원표;이승학
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.157-162
    • /
    • 2001
  • There are many economic and operational reasons to integrate fire alarm signaling system with other building automation system. Integration of this requires communication standard and careful design practices. The important point for this is also the development of intelligent control modules for replacing the conventional zone adapter in fire system. Therefore, this paper proposes an new conceptual design of the distributed fire alarm signaling system and a new intelligent control modules with LonTalk protocol. Newly proposed additions to LonWorks network make it very well suited for integrating fire systems with other building automation systems. Additionally, it is very important that best design practices, test procedures and building codes need to be modernized to accommodate Integrated building systems.

  • PDF

Fault-Tolerant Database System for managing Wind Turbine Control System (무중단의 풍력 발전 시스템 관리를 위한 고가용성 데이터베이스 시스템)

  • Kim, Young-Hwan;Son, Jae-Gi;Ham, Kyung-sun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.56-59
    • /
    • 2012
  • 최근 신재생 에너지 분야 가운데 풍력발전에 대한 관심이 높아지면서 관련 산업 분야의 연구 또한 활발히 수행되고 있다. 풍력발전기의 경우 초기 설치에 고가의 비용이 필요하며, 고장 발생 시 일반적으로 풍력발전기의 동작을 멈추게 한다. 본 논문에서는 풍력발전기의 Nacelle에서 발생하는 다양한 센서데이터를 수집하는 Bottom에서의 제어시스템을 다중화하여 고장 발생 시에도 풍력발전기의 중단 없이 지속적으로 에너지 생산이 가능하게 하는 고가용성 데이터베이스 시스템에 관한 것이다. 본 논문을 통해 개발된 고가용성 시스템을 통해 풍력 발전기의 높은 안정성을 보장하며, 수집된 데이터를 분석함으로서 고장에 대한 예측이 가능하다.

Design of Nonlinear FACTS Controller with intelligent Algorithm (FACTS 비선형 지능 제어기 설계)

  • Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.33-35
    • /
    • 2000
  • We propose a intelligent controller for FACTS(Flexible AC Transmission System) device to stabilize a power system. In order to identify the nonlinear characteristics of the power system and to estimate a control signal, an artificial neural network is utilized. The control signal which is provided for FACTS device installed in the network is produced. The proposed controller is applied to Unified Power Flow Controller(UPFC) to verified the effectiveness of the proposed control system. The results show that the proposed nonlinear FACTS controller is able to enhance the transient stability of three machine nine bus power system.

  • PDF

Development of Steering Control System for UCT (Unmanned Container Transporter) Using Robust Control (무인 차량의 강인한 조향제어 시스템 개발에 관한 연구)

  • Jeong, Seung-Gwon;Kim, In-Su;Kim, Chang-Seop;Choe, Ju-Yong;Yun, Gang-Seop;Lee, Man-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.178-186
    • /
    • 2002
  • In this study, the steering control system for UCT (unmanned container transporter) was developed using MR (Magnetoresistive) sensors. The MR and magnet sensors are used for the lane detecting system. The robust control theory is used for the design of the steering controller to reduce the uncertainties of the road. The performance of the robust steering controller is compared in simulations and tests using the existing PD controller of the UCT.

Design of Intelligent Controller with Time Delay for Internet-Based Remote Control (인터넷 기반 원격제어를 위한 임의의 시간지연을 갖는 지능형 제어기의 설계)

  • Joo, Young-Hoon;Kim, Jung-Chan;Lee, Oh-Jae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.293-299
    • /
    • 2003
  • This paper discusses a design of intelligent controller with time delay for Internet-based remote control. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The Takagi-Sugeno (T-S) fuzzy system with uncertain input delay is utilized to represent nonlinear plant. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized T-S fuzzy system is represented by a discrete-time T-S fuzzy system with jumping parameters. The robust stochastic stabilizibility of the jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs). An experimental results is provided to visualize the feasibility of the proposed method.

A Study on Behavior-based Hybrid Control Architecture for Intelligent Robot (지능로봇을 위한 행위기반의 하이브리드 제어구조에 관한 연구)

  • Kim Kwang-Il;Choi Kyung-Hyun;Lee Seok-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.27-34
    • /
    • 2005
  • To accomplish various and complex tasks by intelligent robots, improvement is needed not only in mechanical system architecture but also in control system architecture. Hybrid control architecture has been suggested as a mutually complementing architecture of the weak points of a deliberative and a reactive control. This paper addresses a control architecture of robots, and a behavior representation methodology. The suggested control architecture consists of three layers of deliberative, sequencing, and reactive as hybrid control architecture. Multi-layer behavior model is employed to represent desired tasks. 3D simulation will be conducted to verify the applicability of suggested control architecture and behavior representation method.

A Hybrid Fire Fighting Control Intelligent System using Rules and Cases in Integrated Platform Management System (통합플랫폼관리체제에서 규칙 및 사례기반의 하이브리드 화재진압통제 지능시스템)

  • 현우석;김용기
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.2
    • /
    • pp.15-27
    • /
    • 2000
  • The paper proposes a hybrid fire fighting control intelligent system(H-FFIS) using rules and cases to detect fire in Integrated Platform Management System. By far most conventional systems have been based on rule-based system in which expert knowledges are expressed with production rules. It is hard to express the knowledges to detect fire with production rules only. The knowledges of fire detection are often based on previously encountered situations of fires. For improvement of system capability renewing and adding of rules is needed in an already build-up system and such adding and renewing procedures could hinder users from fluent utilization of the system. We design and implement H-FFIS. Compared with rule-based FFIS(Fire Fighting control Intelligent System), H-FFIS extended with case-based reasoning shows that the system proposed here can lead to an improvement in fire detection rate.

  • PDF

Implementation of Internet Based Control by Developing LonWorks Intelligent Control Modules

  • W.P. Hong;Park, W.G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.70.5-70
    • /
    • 2001
  • This paper proposes a new Internet based control concept & design method and implementation of LonWorks network system for remote intelligent control. The experimental network system using i.LON Web server is designed and fabricated. It is also verified that the developed control modules with LonTalk protocol have available, interoperable, and reliable performance characteristics from the experimental results. Especially, the results provide a available technical data for remote home, building & plant automation control.

  • PDF

Design of Gateway for In-vehicle Sensor Network

  • Kim, Tae-Hwan;Lee, Seung-Il;Hong, Won-Kee
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.73-76
    • /
    • 2005
  • The advanced information and communication technology gives vehicles another role of the third digital space, merging a physical space with a virtual space in a ubiquitous society. In the ubiquitous environment, the vehicle becomes a sensor node, which has a computing and communication capability in the digital space of wired and wireless network. An intelligent vehicle information system with a remote control and diagnosis is one of the future vehicle systems that we can expect in the ubiquitous environment. However, for the intelligent vehicle system, many issues such as vehicle mobility, in-vehicle communication, service platform and network convergence should be resolved. In this paper, an in-vehicle gateway is presented for an intelligent vehicle information system to make an access to heterogeneous networks. It gives an access to the server systems on the internet via CDMA-based hierarchical module architecture. Some experiments was made to find out how long it takes to communicate between a vehicle's intelligent information system and an external server in the various environment. The results show that the average response time amounts to 776ms at fixec place, 707ms at rural area and 910ms at urban area.

  • PDF

Hardware-In-The-Loop Simulation (HILS) Based Design and Robustness Evaluation of an Intelligent Gantry Crane System

  • ;Jalani, Jamaludin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1729-1734
    • /
    • 2005
  • The use of gantry crane systems for transporting payload is very common in industrial application. However, moving the payload using the crane is not an easy task especially when strict specifications on the swing angle and on the transfer time need to be satisfied. To overcome this problem, this paper describes development of an intelligent gantry crane system based on the mechatronic design. A lab-scale gantry crane is designed and then its intelligent controllers are developed. Fuzzy logic controllers are adopted, designed and implemented for controlling payload position as well as the swing angle of the gantry crane. The performance of the intelligent gantry crane system is evaluated on a hardware-in-the-loop simulation (HILS) environment. Moreover robustness of the proposed system is also evaluated. The result shows that the intelligent gantry crane system designed based on the mechatronic design approach has better performance compared with the automatic gantry crane system controlled by classical PID controllers. Moreover simulation result shows that the intelligent gantry crane system is more robust to parameter variation than the automatic gantry crane system.

  • PDF