스마트폰을 넘어 차세대 IT 비즈니스의 주목할 만한 후보군으로 가상현실이 이슈가 되고 있다. 가상현실은 컴퓨터와 VR헤드셋을 통해 구현한 입체적인 가상공간을 제공함으로써 사용자의 시각을 완전히 장악하고, 청각, 촉각 등 오감과의 상호작용 및 음성, 동작인식 등을 통해 가상공간을 마치 현실처럼 느끼게 한다는 점에서 향후 주목할 만한 산업 분야로 떠오르고 있다. 많은 글로벌 대기업들이 가상현실과 관련한 사업에 투자를 하고 있으나 소비자의 관점에서 가상현실 관련 제품군은 아직 쉽게 접하거나 구매하기 어려운 제품군으로 인식된다. 그렇기 때문에 소비자의 태도 변화가 큰 변화가 발생되고 있지 않으며 Acception & Diffusion 모델의 초기단계에 지나지 않아 구매로 연결되지 않는 실정이다. 본 연구는 기존 선행연구의 관점을 바탕으로 가상현실 헤드기어 제품들의 판매 촉진을 위한 사용자 관점에서의 사용자 저항을 매개 변수로 저항을 감소시키고 사용 및 구매의도에 영향을 주는 선행요인들을 도출하고자 하였으며 사용자가 가지고 있는 태도에 대한 자신감에 영향을 주어 행동 의도까지 변화시키는 현상에 대한 분석을 하고자 하였다. 본 연구의 결과는 태도 자신감에 대한 사용 용이성과 사용 혁신성의 영향력을 확인할 수 있었다. 마찬가지로 사용자 혁신저항에 영향력을 주는 변수로는 가격, 심미적 외관, 즐거움, 콘텐츠 및 화질 관련 변수들을 도출하였다. 결과적으로 본 연구는 태도 자신감의 가상현실 혁신 수용에 대한 영향력을 제시하고 가격 이외 변수인 콘텐츠의 양과 저항감의 관계성을 바탕으로 관련 변수들을 제시하였다. 특히 초기 시장인 가상현실 제품의 특성에 따라 브랜드에 대한 선점효과의 필요성과 콘텐츠의 부족함 등이 실무적으로 해결해야 할 과제로서 확인되었다.
주식 시장은 거래자들의 기업과 시황에 대한 기대가 반영되어 움직이기에, 다양한 원천의 텍스트 데이터 분석을 통해 주가 움직임을 예측하려는 연구들이 진행되어 왔다. 주가의 움직임을 예측하는 것이기에 단순히 주가의 등락 뿐만이 아니라, 뉴스 기사나 소셜 미디어의 반응에 따라 거래를 하고 이에 따른 수익률을 분석하는 연구들이 진행되어 왔다. 주가의 움직임을 예측하는 연구들도 다른 분야의 텍스트 마이닝 접근 방안과 동일하게 단어-문서 매트릭스를 구성하여 분류 알고리즘에 적용하여 왔다. 문서에 많은 단어들이 포함되어 있기 때문에 모든 단어를 가지고 단어-문서 매트릭스를 만드는 것보다는 단어가 문서를 범주로 분류할 때 기여도가 높은 단어들을 선정하여야 한다. 단어의 빈도를 고려하여 너무 적은 등장 빈도나 중요도를 보이는 단어는 제거하게 된다. 단어가 문서를 정확하게 분류하는 데 기여하는 정도를 측정하여 기여도에 따라 사용할 단어를 선정하기도 한다. 단어-문서 매트릭스를 구성하는 기본적인 방안인 분석의 대상이 되는 모든 문서를 수집하여 분류에 영향력을 미치는 단어를 선정하여 사용하는 것이었다. 본 연구에서는 개별 종목에 대한 문서를 분석하여 종목별 등락에 모두 포함되는 단어를 중립 단어로 선정한다. 선정된 중립 단어 주변에 등장하는 단어들을 추출하여 단어-문서 매트릭스 생성에 활용한다. 중립 단어 자체는 주가 움직임과 연관관계가 적고, 중립 단어의 주변 단어가 주가 상승에 더 영향을 미칠 것이라는 생각에서 출발한다. 생성된 단어-문서 매트릭스를 가지고 주가의 등락 여부를 분류하는 알고리즘에 적용하게 된다. 본 연구에서는 종목 별로 중립 단어를 1차 선정하고, 선정된 단어 중에서 다른 종목에도 많이 포함되는 단어는 추가적으로 제외하는 방안을 활용하였다. 온라인 뉴스 포털을 통해 시가 총액 상위 10개 종목에 대한 4개월 간의 뉴스 기사를 수집하였다. 3개월간의 뉴스 기사를 학습 데이터로 분류 모형을 수립하였으며, 남은 1개월간의 뉴스 기사를 모형에 적용하여 다음 날의 주가 움직임을 예측하였다. 본 연구에서 제안하는 중립 단어 활용 알고리즘이 희소성에 기반한 단어 선정 방안에 비해 우수한 분류 성과를 보였다.
본 연구에서는 데이터마이닝 기법의 일종인 자기조직화지도(Self-Organizing Map, SOM)를 이용하여 비외감기업의 부실화 유형을 구분하고자 한다. 자기조직화지도는 인공 신경망을 기초로 자율학습을 통해 입력된 값을 유사한 군집끼리 묶어내는 방법으로, 기존의 통계적 군집 분류 방법보다 성능이 뛰어나고, 고차원의 입력데이터를 저차원으로 시각화할 수 있다는 장점 때문에 다양한 분야에서 각광받고 있다. 본 연구에서는 기존 연구의 주요 분석대상이었던 외감기업에 비해 부실화 빈도는 높지만 데이터 수집의 어려움으로 인해 분석대상에서 다소 제외되었던 비외감기업의 부실화 유형에 대해 알아보고, 유형별 구체적인 사례도 소개하고자 한다. 재무자료수집이 가능한 100개의 비외감 부실기업에 대해 분석한 결과, 비외감기업의 부실화 유형은 다섯 가지로 구분되었다. 유형 1은 전체 집단의 약 12%를 차지하며, 수익성, 성장성 등 재무지표가 다른 유형에 비해 열등하였다. 유형 2는 전체 집단의 약 14%로, 유형 1보다는 덜 심각하지만 재무지표가 대체로 열등하였다. 유형 3은 성장성 지표가 열등한 그룹으로 기업간 경쟁이 극심한 가운데 지속적으로 성장하지 못하고 부실화된 경우로 약 30%의 기업이 포함되었다. 유형 4는 성장성은 탁월하나 부채경영 등 과감한 경영으로 인해 유동성 부족이나 현금부족 등의 이유로 부실화된 그룹으로 약 25%의 기업이 포함되었다. 유형 5는 거의 모든 재무지표가 우수한 건전기업으로, 단기적인 경영전략의 실수 또는 중소기업의 특성상 경영자의 개인적 사정으로 부실화 되었을 가능성이 큰 그룹으로 약 18%의 기업이 포함되었다. 본 연구 결과는 부실화 유형을 구분하는데 기존의 통계적 방법이 아닌 자기조직화지도를 이용하였다는 점에서 학문적 의의가 있고, 비외감기업의 재무지표만으로도 1차적인 부실화 징후를 발견할 수 있다는 점에서 실무적 의의가 있다고 할 수 있다.
최근 딥러닝은 오디오, 텍스트 및 이미지 데이터와 같은 비 체계적인 데이터를 대상으로 다양한 추정, 분류 및 예측 문제에 사용 및 적용되고 있다. 특히, 의류산업에 적용될 경우 딥러닝 기법을 활용한 의류 인식, 의류 검색, 자동 제품 추천 등의 심층 학습을 기반으로 한 응용이 가능하다. 이 때의 핵심모형은 합성곱 신경망을 사용한 이미지 분류이다. 합성곱 신경망은 입력이 전달되고 출력에 도달하는 과정에서 가중치와 같은 매개 변수를 학습하는 뉴런으로 구성되고, 영상 분류에 가장 적합한 방법론으로 사용된다. 기존의 의류 이미지 분류 작업에서 대부분의 분류 모형은 의류 이미지 자체 또는 전문모델 착용 의류와 같이 통제된 상황에서 촬영되는 온라인 제품 이미지를 사용하여 학습을 수행한다. 하지만 본 연구에서는 통제되지 않은 상황에서 촬영되고 사람들의 움직임과 다양한 포즈가 포함된 스트릿 패션 이미지 또는 런웨이 이미지를 분류하려는 상황을 고려하여 분류 모형을 훈련시키는 효과적인 방법을 제안한다. 이동성을 포착하는 런웨이 의류 이미지로 모형을 학습시킴으로써 분류 모형의 다양한 쿼리 이미지에 대한 적응력을 높일 수 있다. 모형 학습 시 먼저 ImageNet 데이터셋을 사용하여 pre-training 과정을 거치고 본 연구를 위해 수집된 32 개 주요 패션 브랜드의 2426개 런웨이 이미지로 구성된 데이터셋을 사용하여 fine-tuning을 수행한다. 학습 과정의 일반화를 고려해 10번의 실험을 수행하고 제안된 모형은 최종 테스트에서 67.2 %의 정확도를 기록했다. 본 연구 모형은 쿼리 이미지가 런웨이 이미지, 제품 이미지 또는 스트릿 패션 이미지가 될 수 있는 다양한 분류 환경에 적용될 수 있다. 구체적으로는 패션 위크에서 모바일 어플리케이션 서비스를 통해 브랜드 검색을 용이하게 하는 서비스를 제공하거나, 패션 잡지사의 편집 작업에 사용되어 브랜드나 스타일을 분류하고 라벨을 붙일 수 있으며, 온라인 쇼핑몰에서 아이템 정보를 제공하거나 유사한 아이템을 추천하는 등의 다양한 목적에 적용될 수 있다.
본 연구는 비트코인 가격 변화량에 영향을 미치는 요인에 대한 실증 분석을 수행하였다. 기존 연구들은 암호화폐와 관련해 블록체인 시스템의 보안성, 암호화폐가 불러일으키는 경제적 파급효과 및 법적 시사점, 소비자 수용 및 사용 의도와 사회현상을 중심으로 이루어졌다. 그러나 암호화폐 가격 변화가 급등과 급락을 반복하면서 많은 사회적 문제를 야기했음에도 불구하고 암호화폐의 가격 변화에 영향을 미치는 요인에 대한 실증적 연구는 부족하다. 때문에 본 연구에서 암호화폐 가격 변화에 미치는 영향 요인을 도출하기 위해 암호화폐 중 가장 대표적인 비트코인을 중심으로 분석을 진행하였다. 분석을 위해 소비자, 산업, 거시경제 세 가지 차원에서 가설을 수립, 각 차원의 변수에 대한 시계열 데이터를 수집하였다. 단위근 검정을 통해 시계열 데이터에 대한 가성 회귀를 제거하고 안정성을 검증한 후, 비트코인 가격 변화량에 영향을 미칠 수 있는 요인들에 대한 회귀 분석을 실시하였다. 분석 결과 비트코인 가격 변화량은 비트코인 거래 금지에 대한 검색 트래픽, 미국 달러지수 변화량과는 음의 상관관계를, GPU 벤더의 주가 변화량, 원유 가격 변화량과는 양의 상관관계를 갖는 것을 확인했다. 그 이유로는 비트코인 거래 금지는 비트코인 존폐와 관련해 투자심리에 부정적 영향을 미친 것으로 판단되며, GPU 벤더 주가는 비트코인 생산 단가 증가와 관련해 비트코인 가격에 영향을 미친 것으로 해석된다. 미국 달러지수와는 반대로 움직임으로서 비트코인이 금의 성격을 갖고 있음을 확인하였으며, 원유 가격과의 관계를 통해 원자재와 같은 투자 자산의 역할도 갖고 있음을 확인하였다. 본 연구의 결과를 통해 비트코인이 가진 성격을 규명하였으며, 비트코인 가격 변화 요인에 대한 실증 검증을 통해, 그 동안 부족했던 비트코인 가격 변화 요인을 규명하였고, 해당 요인들을 통해 실무적으로 소비자나 금융기관, 정부 기관에 대해 비트코인에 대한 전략적인 접근방법에 대한 가이드를 제공할 수 있다는 점에서 의의가 있다.
추천시스템은 사용자의 과거 구매행동을 통해 향후 구매할 것이라고 예상되는 제품을 자동으로 검색하여 추천해준다. 특히 전자상거래 기업의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로 가치가 있다. 하지만, 전통적인 추천시스템, 특히 학계 및 산업계에서 가장 널리 사용되고 있는 전통적인 협업필터링 기법은 단일차원의 '종합 평점'만을 고려하여 추천결과를 생성하도록 설계되어 있어, 사용자들의 정확한 니즈를 이해하고 대응하는데 근본적인 한계가 있다. 최근에는 전자 상거래 기업들도 고객들로부터 보다 다각화된, 다기준 방식으로 피드백을 받고 있다. 특히 다기준 평점은 정량적으로 입력되는 정보이므로 상대적으로 분석 및 처리가 용이하다는 장점이 있다. 그러나 다기준 평점 역시 사전에 정해진 기준에 대해서만 사용자의 피드백이 이루어지기 때문에, 보다 상세하게 사용자의 의견을 이해하여 추천에 반영하는 데에는 한계가 있다. 이에 본 연구는 다기준 평점 정보와 선택적 협업필터링의 서로 다른 접근방법을 통해 도출된 추천결과를 종합하여, 최종적으로 추천 대상리스트를 산출할 수 있는 하이브리드 기술을 제안한다. 본 연구에서 제안한 연구모형의 유용성을 검증하기 위해, 식음료점(식당, 카페 등)에 대한 실제 이용자를 대상으로 온라인 설문을 통해 종합 평점과 다기준 평점을 수집하였으며, 데이터를 학습용과 검증용으로 구분하여 학습시키고 성과를 평가하였다. 이 기법은 결합 함수 기반 접근법과 사용자마다 구매의사결정의 체계가 다르다는 전제하에, 사용자들을 유형화하고, 유형에 따라 정보원을 선택적으로 활용하는 협업필터링 알고리즘을 활용했다. 실험결과, 제안 알고리즘을 통한 추천 방법이 단일 차원을 고려하는 전통적인 협업필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인했다. 아울러, 본 연구가 제안하는 다기준 평점과 선택적 협업필터링 알고리즘을 종합하여 추천하는 방법이, 단순히 다기준 평점을 고려했을 때 보다 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.
기업신용등급은 금융시장의 신뢰를 구축하고 거래를 활성화하는데 있어 매우 중요한 요소로서, 오래 전부터 학계에서는 보다 정확한 기업신용등급 예측을 가능케 하는 다양한 모형들을 연구해 왔다. 구체적으로 다중판별분석(Multiple Discriminant Analysis, MDA)이나 다항 로지스틱 회귀분석(multinomial logistic regression analysis, MLOGIT)과 같은 통계기법을 비롯해, 인공신경망(Artificial Neural Networks, ANN), 사례기반추론(Case-based Reasoning, CBR), 그리고 다분류 문제해결을 위해 확장된 다분류 Support Vector Machines(Multiclass SVM)에 이르기까지 다양한 기법들이 학자들에 의해 적용되었는데, 최근의 연구결과들에 따르면 이 중에서도 다분류 SVM이 가장 우수한 예측성과를 보이고 있는 것으로 보고되고 있다. 본 연구에서는 이러한 다분류 SVM의 성능을 한 단계 더 개선하기 위한 대안으로 유전자 알고리즘(GA, Genetic Algorithm)을 활용한 최적화 모형을 제안한다. 구체적으로 본 연구의 제안모형은 유전자 알고리즘을 활용해 다분류 SVM에 적용되어야 할 최적의 커널 함수 파라미터값들과 최적의 입력변수 집합(feature subset)을 탐색하도록 설계되었다. 실제 데이터셋을 활용해 제안모형을 적용해 본 결과, MDA나 MLOGIT, CBR, ANN과 같은 기존 인공지능/데이터마이닝 기법들은 물론 지금까지 가장 우수한 예측성과를 보이는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안모형이 더 우수한 예측성과를 보임을 확인할 수 있었다.
상품 검색시간의 단축과 쇼핑에 투입되는 노력의 감소 등, 온라인 쇼핑이 주는 장점에 대한 긍정적인 인식이 확산되면서 전자상거래(e-commerce)의 중요성이 부각되는 추세이다. 전자상거래 기업들은 고객확보를 위해 다양한 인터넷 고객관계 관리(eCRM) 활동을 전개하고 있는데, 개인화된 추천 서비스의 제공은 그 중 하나이다. 정확한 추천 시스템의 구축은 전자상거래 기업의 성과를 좌우하는 중요한 요소이기 때문에, 추천 서비스의 정확도를 높이기 위한 다양한 알고리즘들이 연구되어 왔다. 특히 협업필터링(collaborative filtering: CF)은 가장 성공적인 추천기법으로 알려져 있다. 그러나 고객이 상품을 구매한 과거의 전자상거래 기록을 바탕으로 미래의 추천을 하기 때문에 많은 단점들이 존재한다. 신규 고객의 경우 유사한 구매 성향을 가진 고객들을 찾기 어렵고 (Cold-Start problem), 상품 수에 비해 구매기록이 부족할 경우 상관관계를 도출할 데이터가 희박하게 되어(Sparsity) 추천성능이 떨어지게 된다. 취향이 독특한 사용자를 뜻하는 'Gray Sheep'에 의한 추천성능의 저하도 그 중 하나이다. 이러한 문제인식을 토대로, 본 연구에서는 소셜 네트워크 분석기법 (Social Network Analysis: SNA)과 협업필터링을 결합하여 데이터셋의 특이 취향 사용자 (Gray Sheep) 문제를 해소하는 방법을 제시한다. 취향이 독특한 고객들의 구매데이터를 소셜 네트워크 분석지표를 활용하여 전체 데이터에서 분리해낸다. 그리고 분리한 데이터와 나머지 데이터인 두 가지 데이터셋에 대하여 각기 다른 유사도 기법과 트레이닝 셋을 적용한다. 이러한 방법을 사용한 추천성능의 향상을 검증하기 위하여 미국 미네소타 대학 GroupLens 연구팀에 의해 수집된 무비렌즈 데이터(http://movielens.org)를 활용하였다. 검증결과, 일반적인 협업필터링 추천시스템에 비하여 이 기법을 활용한 협업필터링의 추천성능이 향상됨을 확인하였다.
몰입은 관람객이 콘텐츠를 관람할 때 관람객들이 콘텐츠에 몰두하고 있는 심리적 상태를 의미하는 것으로, 관람객의 몰입경험은 콘텐츠의 만족도에 긍정적인 영향을 미친다. 따라서 공연 같은 콘텐츠를 제공하는 기업들은 콘텐츠의 흥행을 위해 관람객의 몰입도를 측정하는 것은 매우 중요하다. 설문 등의 표본조사 방법을 통해 관람객의 몰입도를 측정 연구는 방송분야 등 에서 널리 사용되고 있다. 이러한 몰입도 측정방법은 콘텐츠 관람 이후 설문을 실시하기 때문에 몰입도를 실시간으로 측정할 수 없을 뿐만 아니라 몰입도 측정의 정확성이 저하되는 문제 등이 있다. 이러한 문제를 해결하기 위하여 생리적 반응이나 얼굴 표정 분석, 그리고 움직임 관찰 방법 등을 이용하여 몰입도를 측정하는 연구가 수행되고 있다. 생체 신호를 이용하여 몰입도를 측정하는 연구의 경우, 1인을 대상으로 생체신호를 측정할 뿐만 아니라, 많은 데이터 처리 시간과 비용이 소모되는 단점이 있어 많은 관람객이 관람하는 공연장에 적용하기에는 한계가 있다. 얼굴 표정인식 통해 몰입도를 측정하는 경우도 1인을 대상으로 하고 있으며, 밝은 조명의 실험실 환경에서만 가능하다는 단점이 존재한다. 또한 관람객들의 움직인 동기화를 이용하여 몰입도를 특정한 연구는 다중관객을 대상으로 하였지만, 이는 실험실 환경에 한정하여 적용된 사례이다. 따라서 본 연구에서는 공연장, 시사회관 등 많은 관람객들이 콘텐츠를 관람하는 실제 환경에서 다중관람객이 다중몰입도의 정량적 평가를 위한 시스템을 설계하고 개발하였다. 제안된 시스템은 외부장치, 서버, 내부장치 등의 3부분으로 구성되어 있다. 서울시 마포구 상암동에 위치한 DMC 홍보관에 상설 전시장으로 운영하고 있으며, 관람객들을 대상으로 데이터를 획득하고 있다. 제안하고 있는 시스템을 활용하면 콘텐츠의 어느 구간에서 관객들이 몰입을 하고 있는지, 어느 구간에서 몰입을 하고 있지 못한지 분석가능하기 때문에, 향후 콘텐츠 제작 및 마케팅에 유용하게 활용할 수 있을 것으로 기대된다.
최근 IPTV와 스마트 TV 등의 등장과 영상 콘텐츠를 시청하고 검색할 수 있는 웹 서비스의 등장으로 영상 콘텐츠의 접근이 용이해져 사용자들은 자신이 원하는 콘텐츠를 찾고자 하는 요구가 증가하고 있다. 하지만 서비스되는 콘텐츠의 양이 방대하여 영상 콘텐츠를 검색할 때 사용하는 키워드 기반의 검색은 많은 양의 결과를 가져오며 사용자가 필요로 하지 않은 결과가 검색된다. 따라서 사용자가 원하는 콘텐츠의 검색 시간과 노력이 증가 하게 되었다. 이를 극복 하기 위해 콘텐츠 추천 및 검색에 대한 연구가 수행되어 왔다. 기존의 연구에는 사용자의 선호도 분석을 통하여 영상 콘텐츠를 추천하거나 비슷한 성향을 가지는 사용자들을 분류하여 콘텐츠를 추천하는 기법들이 연구되어 왔다. 본 논문에서는 영상 콘텐츠 중 영화의 추천을 위해 사용자 개인의 영화 메타데이터의 선호도를 분석하고, 영화의 메타데이터와 영화의 유사성을 도출하여 이를 기반으로 영화 추천 기법을 제안한다. 영화의 특징을 담고 있고, 사용자의 영화 선호도에 영향을 끼치는 장르, 줄거리, 배우, 키워드 등의 영화 메타데이터를 기반으로 온톨로지를 구축하고, 확률 기법을 통한 메타 데이터간의 유사성을 분석하여 유사 메타데이터를 연결한다. 또한 사용자의 선호도와 그룹을 정의하고, 사용자 정보를 활용하기 위한 사용자 모델을 정의한다. 제안하는 추천 기법은 1) 사용자 정보기반의 후보 영화 검색 컴포넌트, 2) 사용자 선호기반의 후보 영화 검색 컴포넌트, 3) 1)과 2)의 결과를 통합하고 가중치를 부여하는 컴포넌트, 4) 최종결과의 분석을 통한 개인화된 영화 추천 컴포넌트 등 총 4가지 컴포넌트로 구성된다. 제안하는 추천 기법의 실험을 위하여 20대 남/녀 10명씩 20명을 대상으로 실험을 진행하였으며, 실험결과 평균 Top-5에서 2.1개 Top-10에서 3.35개 Top-20에서 6.35의 영화가 보고 싶은 영화로 선택되었다. 본 논문에서는 영화 메타데이터간의 연관성 도출을 통하여 영화간의 유사성을 도출하고 이를 기반으로 사용자의 기본적인 정보를 활용한 추천뿐만 아니라 사용자가 예상하지 못한 영화의 추천이 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.