• Title/Summary/Keyword: Intelligence Theory

Search Result 402, Processing Time 0.024 seconds

Personal Information Overload and User Resistance in the Big Data Age (빅데이터 시대의 개인정보 과잉이 사용자 저항에 미치는 영향)

  • Lee, Hwansoo;Lim, Dongwon;Zo, Hangjung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.125-139
    • /
    • 2013
  • Big data refers to the data that cannot be processes with conventional contemporary data technologies. As smart devices and social network services produces vast amount of data, big data attracts much attention from researchers. There are strong demands form governments and industries for bib data as it can create new values by drawing business insights from data. Since various new technologies to process big data introduced, academic communities also show much interest to the big data domain. A notable advance related to the big data technology has been in various fields. Big data technology makes it possible to access, collect, and save individual's personal data. These technologies enable the analysis of huge amounts of data with lower cost and less time, which is impossible to achieve with traditional methods. It even detects personal information that people do not want to open. Therefore, people using information technology such as the Internet or online services have some level of privacy concerns, and such feelings can hinder continued use of information systems. For example, SNS offers various benefits, but users are sometimes highly exposed to privacy intrusions because they write too much personal information on it. Even though users post their personal information on the Internet by themselves, the data sometimes is not under control of the users. Once the private data is posed on the Internet, it can be transferred to anywhere by a few clicks, and can be abused to create fake identity. In this way, privacy intrusion happens. This study aims to investigate how perceived personal information overload in SNS affects user's risk perception and information privacy concerns. Also, it examines the relationship between the concerns and user resistance behavior. A survey approach and structural equation modeling method are employed for data collection and analysis. This study contributes meaningful insights for academic researchers and policy makers who are planning to develop guidelines for privacy protection. The study shows that information overload on the social network services can bring the significant increase of users' perceived level of privacy risks. In turn, the perceived privacy risks leads to the increased level of privacy concerns. IF privacy concerns increase, it can affect users to from a negative or resistant attitude toward system use. The resistance attitude may lead users to discontinue the use of social network services. Furthermore, information overload is mediated by perceived risks to affect privacy concerns rather than has direct influence on perceived risk. It implies that resistance to the system use can be diminished by reducing perceived risks of users. Given that users' resistant behavior become salient when they have high privacy concerns, the measures to alleviate users' privacy concerns should be conceived. This study makes academic contribution of integrating traditional information overload theory and user resistance theory to investigate perceived privacy concerns in current IS contexts. There is little big data research which examined the technology with empirical and behavioral approach, as the research topic has just emerged. It also makes practical contributions. Information overload connects to the increased level of perceived privacy risks, and discontinued use of the information system. To keep users from departing the system, organizations should develop a system in which private data is controlled and managed with ease. This study suggests that actions to lower the level of perceived risks and privacy concerns should be taken for information systems continuance.

Step-by-Step Growth Factors for Technology-Based Ventures: A Case Study of Advanced Nano Products Co. Ltd (기술기반 벤처기업의 단계별 성장요인: (주)나노신소재 사례 중심으로)

  • Jeong, Chanwoo;Lee, Wonil
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.6
    • /
    • pp.85-105
    • /
    • 2021
  • In this study, a case study was conducted on Advanced Nano Products Co.,Ltd, a company that was established in 2000 and has the core technology to produce and commercialize nano materials and ultrafine nano powders based on nano technology. Deviating from the general case study, a case study analysis frame was set based on the theory of technology management and industry-university cooperation theory, and cases were analyzed. In this case study, Advanced Nano Products Co.,Ltd. was analyzed from two analytical perspectives: the establishment of a Management Of Technology system within the company and the Industry-Academic Cooperation activity. Based on this theoretical-based analysis framework, company visit interviews and related data research and analysis were conducted. As a result of the study of the case company, it was possible to derive how the technology management and industry-university cooperation affect the growth stage of the company as follows. First, the strategic use of technology management is an important factor in strengthening the competitive advantage and core competencies of venture companies, and for survival and growth of startups in the early stages. Second, strategic use of technology management and patents and establishment of a patent management system are a part of business strategy and play a pivotal role in corporate performance. Third, the human and material infrastructure of universities affects the growth of companies in the early stage of start-up, and the high utilization of industry-university cooperation promotes the growth of companies. Fourth, continuous industry-academic cooperation activities in the growth and maturity stages of a company's growth stage are the basis for activating external exchanges and building networks. Lastly, technology management and industry-university cooperation were found to be growth factors for each growth stage of a company. In order for a company to develop continuously from the start-up to the growth and maturity stages, it is necessary to establish a technology management system from the beginning and promote strategic technology management activities. In addition, it can be said that it is important to carry out various industry-academic cooperation activities outside the company. As a result of the case analysis, it was found that Advanced Nano Products Co.,Ltd, which performed these two major activities well, overcame the crisis step by step and continued to grow until now. This study shows how the use of technology management and industry-academic cooperation creates value in each growth stage of technology-based venture companies. In addition, its active use will play a big role in the growth of other venture companies. The results of this case study can be a valid reference for growth research of technology start-up venture companies and related field application and utilization.

Image based Experience Goods, Text-based Search Goods: Cognitive Fit between Product Information Composition and Product Type depending on Regulatory Focus (이미지 기반의 경험재, 텍스트 기반의 탐색재: 조절초점에 따른 제품 정보 구성 방식과 제품 유형의 일치 효과)

  • Park, Kyung-Hee;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.75-100
    • /
    • 2022
  • Untact mobile commerce shows a rapid growth due to the prolonged COVID-19 pandemic. And companies have a lot of tough competition in this trend. However, the detail pages of products which play an important role in purchase decision have been provided mostly for consumers in a form of stereotyped information composition. This study has found that the form of (image-centered vs. text-centered) information composition of detailed descriptions of products in the detail pages of mobile products has an effect on product attitude and purchase intention as consumers' information appeal methods vary depending on product types (search goods vs. experience goods). That is, search goods whose information search is easy and whose quality is predictable could be found that product attitude and purchase intention have a more positive effect on the form of image-centered information composition. And experience goods whose quality is unpredictable could be found that product attitude and purchase intention have a more positive effect on the form of text-centered information composition. And effects of congruence between product types based on Higgins' regulatory focus theory and the form of information composition have found to vary depending on consumers' chronic regulatory focus. Promotion focus seeking consumers showed effects of congruence between product types and the form of information composition and prevention focus seeking consumers did not show effects of congruence between them. That is, promotion focus seeking consumers have found to have more positive product attitude and purchase intention in the form of image-centered information composition of experience goods and text-centered information composition of search goods. And prevention focus seeking consumers have found to be unable to have an effect on product attitude and purchase intention even though the form of image or text-centered information composition of search and experience goods is presented. The study implies that the form of information composition should be designed, produced, and provided for consumers by considering product types and consumer propensity when designing it in the detail pages of mobile products.

Pareto Ratio and Inequality Level of Knowledge Sharing in Virtual Knowledge Collaboration: Analysis of Behaviors on Wikipedia (지식 공유의 파레토 비율 및 불평등 정도와 가상 지식 협업: 위키피디아 행위 데이터 분석)

  • Park, Hyun-Jung;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.19-43
    • /
    • 2014
  • The Pareto principle, also known as the 80-20 rule, states that roughly 80% of the effects come from 20% of the causes for many events including natural phenomena. It has been recognized as a golden rule in business with a wide application of such discovery like 20 percent of customers resulting in 80 percent of total sales. On the other hand, the Long Tail theory, pointing out that "the trivial many" produces more value than "the vital few," has gained popularity in recent times with a tremendous reduction of distribution and inventory costs through the development of ICT(Information and Communication Technology). This study started with a view to illuminating how these two primary business paradigms-Pareto principle and Long Tail theory-relates to the success of virtual knowledge collaboration. The importance of virtual knowledge collaboration is soaring in this era of globalization and virtualization transcending geographical and temporal constraints. Many previous studies on knowledge sharing have focused on the factors to affect knowledge sharing, seeking to boost individual knowledge sharing and resolve the social dilemma caused from the fact that rational individuals are likely to rather consume than contribute knowledge. Knowledge collaboration can be defined as the creation of knowledge by not only sharing knowledge, but also by transforming and integrating such knowledge. In this perspective of knowledge collaboration, the relative distribution of knowledge sharing among participants can count as much as the absolute amounts of individual knowledge sharing. In particular, whether the more contribution of the upper 20 percent of participants in knowledge sharing will enhance the efficiency of overall knowledge collaboration is an issue of interest. This study deals with the effect of this sort of knowledge sharing distribution on the efficiency of knowledge collaboration and is extended to reflect the work characteristics. All analyses were conducted based on actual data instead of self-reported questionnaire surveys. More specifically, we analyzed the collaborative behaviors of editors of 2,978 English Wikipedia featured articles, which are the best quality grade of articles in English Wikipedia. We adopted Pareto ratio, the ratio of the number of knowledge contribution of the upper 20 percent of participants to the total number of knowledge contribution made by the total participants of an article group, to examine the effect of Pareto principle. In addition, Gini coefficient, which represents the inequality of income among a group of people, was applied to reveal the effect of inequality of knowledge contribution. Hypotheses were set up based on the assumption that the higher ratio of knowledge contribution by more highly motivated participants will lead to the higher collaboration efficiency, but if the ratio gets too high, the collaboration efficiency will be exacerbated because overall informational diversity is threatened and knowledge contribution of less motivated participants is intimidated. Cox regression models were formulated for each of the focal variables-Pareto ratio and Gini coefficient-with seven control variables such as the number of editors involved in an article, the average time length between successive edits of an article, the number of sections a featured article has, etc. The dependent variable of the Cox models is the time spent from article initiation to promotion to the featured article level, indicating the efficiency of knowledge collaboration. To examine whether the effects of the focal variables vary depending on the characteristics of a group task, we classified 2,978 featured articles into two categories: Academic and Non-academic. Academic articles refer to at least one paper published at an SCI, SSCI, A&HCI, or SCIE journal. We assumed that academic articles are more complex, entail more information processing and problem solving, and thus require more skill variety and expertise. The analysis results indicate the followings; First, Pareto ratio and inequality of knowledge sharing relates in a curvilinear fashion to the collaboration efficiency in an online community, promoting it to an optimal point and undermining it thereafter. Second, the curvilinear effect of Pareto ratio and inequality of knowledge sharing on the collaboration efficiency is more sensitive with a more academic task in an online community.

An Empirical Study on Influencing Factors of Switching Intention from Online Shopping to Webrooming (온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인에 대한 연구)

  • Choi, Hyun-Seung;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.19-41
    • /
    • 2016
  • Recently, the proliferation of mobile devices such as smartphones and tablet personal computers and the development of information communication technologies (ICT) have led to a big trend of a shift from single-channel shopping to multi-channel shopping. With the emergence of a "smart" group of consumers who want to shop in more reasonable and convenient ways, the boundaries apparently dividing online and offline shopping have collapsed and blurred more than ever before. Thus, there is now fierce competition between online and offline channels. Ever since the emergence of online shopping, a major type of multi-channel shopping has been "showrooming," where consumers visit offline stores to examine products before buying them online. However, because of the growing use of smart devices and the counterattack of offline retailers represented by omni-channel marketing strategies, one of the latest huge trends of shopping is "webrooming," where consumers visit online stores to examine products before buying them offline. This has become a threat to online retailers. In this situation, although it is very important to examine the influencing factors for switching from online shopping to webrooming, most prior studies have mainly focused on a single- or multi-channel shopping pattern. Therefore, this study thoroughly investigated the influencing factors on customers switching from online shopping to webrooming in terms of both the "search" and "purchase" processes through the application of a push-pull-mooring (PPM) framework. In order to test the research model, 280 individual samples were gathered from undergraduate and graduate students who had actual experience with webrooming. The results of the structural equation model (SEM) test revealed that the "pull" effect is strongest on the webrooming intention rather than the "push" or "mooring" effects. This proves a significant relationship between "attractiveness of webrooming" and "webrooming intention." In addition, the results showed that both the "perceived risk of online search" and "perceived risk of online purchase" significantly affect "distrust of online shopping." Similarly, both "perceived benefit of multi-channel search" and "perceived benefit of offline purchase" were found to have significant effects on "attractiveness of webrooming" were also found. Furthermore, the results indicated that "online purchase habit" is the only influencing factor that leads to "online shopping lock-in." The theoretical implications of the study are as follows. First, by examining the multi-channel shopping phenomenon from the perspective of "shopping switching" from online shopping to webrooming, this study complements the limits of the "channel switching" perspective, represented by multi-channel freeriding studies that merely focused on customers' channel switching behaviors from one to another. While extant studies with a channel switching perspective have focused on only one type of multi-channel shopping, where consumers just move from one particular channel to different channels, a study with a shopping switching perspective has the advantage of comprehensively investigating how consumers choose and navigate among diverse types of single- or multi-channel shopping alternatives. In this study, only limited shopping switching behavior from online shopping to webrooming was examined; however, the results should explain various phenomena in a more comprehensive manner from the perspective of shopping switching. Second, this study extends the scope of application of the push-pull-mooring framework, which is quite commonly used in marketing research to explain consumers' product switching behaviors. Through the application of this framework, it is hoped that more diverse shopping switching behaviors can be examined in future research. This study can serve a stepping stone for future studies. One of the most important practical implications of the study is that it may help single- and multi-channel retailers develop more specific customer strategies by revealing the influencing factors of webrooming intention from online shopping. For example, online single-channel retailers can ease the distrust of online shopping to prevent consumers from churning by reducing the perceived risk in terms of online search and purchase. On the other hand, offline retailers can develop specific strategies to increase the attractiveness of webrooming by letting customers perceive the benefits of multi-channel search or offline purchase. Although this study focused only on customers switching from online shopping to webrooming, the results can be expanded to various types of shopping switching behaviors embedded in single- and multi-channel shopping environments, such as showrooming and mobile shopping.

Improved Social Network Analysis Method in SNS (SNS에서의 개선된 소셜 네트워크 분석 방법)

  • Sohn, Jong-Soo;Cho, Soo-Whan;Kwon, Kyung-Lag;Chung, In-Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.117-127
    • /
    • 2012
  • Due to the recent expansion of the Web 2.0 -based services, along with the widespread of smartphones, online social network services are being popularized among users. Online social network services are the online community services which enable users to communicate each other, share information and expand human relationships. In the social network services, each relation between users is represented by a graph consisting of nodes and links. As the users of online social network services are increasing rapidly, the SNS are actively utilized in enterprise marketing, analysis of social phenomenon and so on. Social Network Analysis (SNA) is the systematic way to analyze social relationships among the members of the social network using the network theory. In general social network theory consists of nodes and arcs, and it is often depicted in a social network diagram. In a social network diagram, nodes represent individual actors within the network and arcs represent relationships between the nodes. With SNA, we can measure relationships among the people such as degree of intimacy, intensity of connection and classification of the groups. Ever since Social Networking Services (SNS) have drawn increasing attention from millions of users, numerous researches have made to analyze their user relationships and messages. There are typical representative SNA methods: degree centrality, betweenness centrality and closeness centrality. In the degree of centrality analysis, the shortest path between nodes is not considered. However, it is used as a crucial factor in betweenness centrality, closeness centrality and other SNA methods. In previous researches in SNA, the computation time was not too expensive since the size of social network was small. Unfortunately, most SNA methods require significant time to process relevant data, and it makes difficult to apply the ever increasing SNS data in social network studies. For instance, if the number of nodes in online social network is n, the maximum number of link in social network is n(n-1)/2. It means that it is too expensive to analyze the social network, for example, if the number of nodes is 10,000 the number of links is 49,995,000. Therefore, we propose a heuristic-based method for finding the shortest path among users in the SNS user graph. Through the shortest path finding method, we will show how efficient our proposed approach may be by conducting betweenness centrality analysis and closeness centrality analysis, both of which are widely used in social network studies. Moreover, we devised an enhanced method with addition of best-first-search method and preprocessing step for the reduction of computation time and rapid search of the shortest paths in a huge size of online social network. Best-first-search method finds the shortest path heuristically, which generalizes human experiences. As large number of links is shared by only a few nodes in online social networks, most nods have relatively few connections. As a result, a node with multiple connections functions as a hub node. When searching for a particular node, looking for users with numerous links instead of searching all users indiscriminately has a better chance of finding the desired node more quickly. In this paper, we employ the degree of user node vn as heuristic evaluation function in a graph G = (N, E), where N is a set of vertices, and E is a set of links between two different nodes. As the heuristic evaluation function is used, the worst case could happen when the target node is situated in the bottom of skewed tree. In order to remove such a target node, the preprocessing step is conducted. Next, we find the shortest path between two nodes in social network efficiently and then analyze the social network. For the verification of the proposed method, we crawled 160,000 people from online and then constructed social network. Then we compared with previous methods, which are best-first-search and breath-first-search, in time for searching and analyzing. The suggested method takes 240 seconds to search nodes where breath-first-search based method takes 1,781 seconds (7.4 times faster). Moreover, for social network analysis, the suggested method is 6.8 times and 1.8 times faster than betweenness centrality analysis and closeness centrality analysis, respectively. The proposed method in this paper shows the possibility to analyze a large size of social network with the better performance in time. As a result, our method would improve the efficiency of social network analysis, making it particularly useful in studying social trends or phenomena.

Bankruptcy prediction using an improved bagging ensemble (개선된 배깅 앙상블을 활용한 기업부도예측)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.121-139
    • /
    • 2014
  • Predicting corporate failure has been an important topic in accounting and finance. The costs associated with bankruptcy are high, so the accuracy of bankruptcy prediction is greatly important for financial institutions. Lots of researchers have dealt with the topic associated with bankruptcy prediction in the past three decades. The current research attempts to use ensemble models for improving the performance of bankruptcy prediction. Ensemble classification is to combine individually trained classifiers in order to gain more accurate prediction than individual models. Ensemble techniques are shown to be very useful for improving the generalization ability of the classifier. Bagging is the most commonly used methods for constructing ensemble classifiers. In bagging, the different training data subsets are randomly drawn with replacement from the original training dataset. Base classifiers are trained on the different bootstrap samples. Instance selection is to select critical instances while deleting and removing irrelevant and harmful instances from the original set. Instance selection and bagging are quite well known in data mining. However, few studies have dealt with the integration of instance selection and bagging. This study proposes an improved bagging ensemble based on instance selection using genetic algorithms (GA) for improving the performance of SVM. GA is an efficient optimization procedure based on the theory of natural selection and evolution. GA uses the idea of survival of the fittest by progressively accepting better solutions to the problems. GA searches by maintaining a population of solutions from which better solutions are created rather than making incremental changes to a single solution to the problem. The initial solution population is generated randomly and evolves into the next generation by genetic operators such as selection, crossover and mutation. The solutions coded by strings are evaluated by the fitness function. The proposed model consists of two phases: GA based Instance Selection and Instance based Bagging. In the first phase, GA is used to select optimal instance subset that is used as input data of bagging model. In this study, the chromosome is encoded as a form of binary string for the instance subset. In this phase, the population size was set to 100 while maximum number of generations was set to 150. We set the crossover rate and mutation rate to 0.7 and 0.1 respectively. We used the prediction accuracy of model as the fitness function of GA. SVM model is trained on training data set using the selected instance subset. The prediction accuracy of SVM model over test data set is used as fitness value in order to avoid overfitting. In the second phase, we used the optimal instance subset selected in the first phase as input data of bagging model. We used SVM model as base classifier for bagging ensemble. The majority voting scheme was used as a combining method in this study. This study applies the proposed model to the bankruptcy prediction problem using a real data set from Korean companies. The research data used in this study contains 1832 externally non-audited firms which filed for bankruptcy (916 cases) and non-bankruptcy (916 cases). Financial ratios categorized as stability, profitability, growth, activity and cash flow were investigated through literature review and basic statistical methods and we selected 8 financial ratios as the final input variables. We separated the whole data into three subsets as training, test and validation data set. In this study, we compared the proposed model with several comparative models including the simple individual SVM model, the simple bagging model and the instance selection based SVM model. The McNemar tests were used to examine whether the proposed model significantly outperforms the other models. The experimental results show that the proposed model outperforms the other models.

The Effect of Mobile Advertising Platform through Big Data Analytics: Focusing on Advertising, and Media Characteristics (빅데이터 분석을 통한 모바일 광고플랫폼의 광고효과 연구: 광고특성, 매체특성을 중심으로)

  • Bae, Seong Deok;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.37-57
    • /
    • 2018
  • With the spread of smart phones, interest in mobile media is on the increase as useful media recently. Mobile media is assessed as having differentiated advantages from existing media in that not only can they provide consumers with desired information anytime and anywhere but also real-time interaction is possible in them. So far, studies on mobile advertising were mostly researches analyzing satisfaction with, and acceptance of, mobile advertising based on survey, researches focusing on the factors affecting acceptance of mobile advertising messages and researches verifying the effect of mobile advertising on brand recall, advertising attitude and brand attitude through experiments. Most of the domestic mobile advertising studies related to advertisement effect and advertisement attitude have been conducted through experiments and surveys. The advertising effectiveness measure of the mobile ad used the attitude of the advertisement, purchase intention, etc. To date, there have been few studies on the effects of mobile advertising on actual advertising data to prove the characteristics of the advertising platform and to prove the relationship between the factors influencing the advertising effect and the factors. In order to explore advertising effect of mobile advertising platform currently commercialized, this study defined advertising characteristics and media characteristics from the perspective of advertiser, advertising platform and publisher and analyzed the influence of each characteristic on advertising effect. As the advertisement characteristics, we classified advertisement format classified by bar type and floating type, and advertisement material classified by image and text. We defined advertisement characteristics of advertisement platform as Hedonic and Utilitarian media characteristics. As a dependent variable, we use CTR, which is the ratio of response (click) to ad exposure. The theoretical background and the analysis of the mobile advertising business, the hypothesis that the advertisement effect is different according to the advertisement specification, the advertisement material, In the ad standard, bar ads are classified as static framing, Floating ads can be categorized as dynamic framing, and the hypothetical definition of floating advertisements, which are high-profile dynamic framing ads, is highly responsive. In advertising, images with high salience are defined to have higher ad response than text. In the media characteristics classified as practical / hedonic type, it is defined that the hedonic type media has a more relaxed tendency than the practical media, and there is a high possibility of receiving various information because there is no clear target. In addition, image material and hedonic media are defined to be highly effective in the interaction between advertisement specification and advertisement material, advertisement specifications and media characteristics, and advertisement material and media characteristics. As the result of regression analysis on each characteristic, material standard, which is a characteristic of mobile advertisement, and media characteristics separated into 'Hedonic' and 'Utilitarian' had significant influence on advertisement effect and mutual interaction effect was also confirmed. In the mobile advertising standard, the advertising effect of the floating advertisement is higher than that of the bar advertisement, Floating ads were more effective than text ads for image ads. In addition, it was confirmed that the advertising effect is higher in the practical media than the hedonic media. The research was carried out with the big data collected from the mobile advertising platform, and it was possible to grasp the advertising effect of the measure index standard which is used in the practical work which could not be grasped in the previous research. In other words, the study was conducted using the CTR, which is a measure of the effectiveness of the advertisement used in the online advertisement and the mobile advertisement, which are not dependent on the attitude of the ad, the attitude of the brand, and the purchase intention. This study suggests that CTR is used as a dependent variable of advertising effect based on actual data of mobile ad platform accumulated over a long period of time. The results of this study is expected to contribute to establishment of optimum advertisement strategy such as creation of advertising materials and planning of media which suit advertised products at the time of mobile advertisement.

Efficient Utilization of Private Resources for the National Defense - Focused on maintenance, supply, transportation, training & education - (국방분야 민간자원의 효율적 활용방안 - 정비, 보급, 수송, 교육훈련분야를 중심으로 -)

  • Park, Kyun-Yong
    • Journal of National Security and Military Science
    • /
    • s.9
    • /
    • pp.313-340
    • /
    • 2011
  • The National Defense Reformation bill of "National Defense Reformation 2020" which have been constantly disputed and reformed by the government went through various levels of complementary measures after the North Korean sinking on the Republic of Korea (ROK) Naval Vessel "Cheonan". The final outcome of this reform is also known as the 307 Plan and this was announced on the 8th March. The reformed National Defense Reformation is to reduce the number of units and military personnel under the military structure reformation. However, in order for us to undertake successful National Defense Reformation, the use of privatized civilian resources are essential. Therefore according to this theory, the ROK Ministry of National Defense (MND) have selected the usage of privatized resources as one of the main core agenda for the National Defense Reformation management procedures, and under this agenda the MND plans to further expand the usage of private Especially the MND plans to minimize the personnel resources applied in non-combat areas and in turn use these supplemented personnel with optimization. In order to do this, the MND have initiated necessary appropriate analysis over the whole national defense section by understanding various projects and acquisition requests required by each militaries and civilian research institutions. However for efficient management of privatized civilian resources, first of all, those possible efficient private resources which can achieve optimization will need to be identified, and secondly continuous systematic reinforcements will need to be made in private resource usage legislations. Furthermore, we would need to consider the possibility of labor disputes because of privatization expansion. Therefore, full legal and systematic complementary measures are required in all possible issue arising areas which can affect the combat readiness posture. There is another problem of huge increase in operational expenses as reduction of standby forces are only reducing the number of soldiers and filling these numbers with more cost expensive commissioned officers. However, to overcome this problem, we would need to reduce the number of positions available for active officers and fill these positions with military reserve personnel who previously had working experiences with the related positions (thereby guaranteeing active officers re-employment after completing active service). This would in tum maintain the standards of combat readiness posture and reduce necessary financial budgets which may newly arise. The area of maintenance, supply, transportation, training & education duties which are highly efficient when using privatized resources, will need to be transformed from military management based to civilian management based system. For maintenance, this can be processed by integrating National Maintenance Support System. In order for us to undertake this procedure, we would need to develop maintenance units which are possible to be privatized and this will in turn reduce the military personnel executing job duties, improve service quality and prevent duplicate investments etc. For supply area, we will need to establish Integrated Military Logistics Center in-connection with national and civilian logistics system. This will in turn reduce the logistics time frame as well as required personnel and equipments. In terms of transportation, we will need to further expand the renting and leasing system. This will need to be executed by integrating the National Defense Transportation Information System which will in turn reduce the required personnel and financial budgets. Finally for training and education, retired military personnel can be employed as training instructors and at the military academy, further expansion in the number of civilian professors can be employed in-connection with National Defense Reformation. In other words, more active privatized civilian resources will need to be managed and used for National Defense Reformation.

  • PDF

Participation Level in Online Knowledge Sharing: Behavioral Approach on Wikipedia (온라인 지식공유의 참여정도: 위키피디아에 대한 행태적 접근)

  • Park, Hyun Jung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.97-121
    • /
    • 2013
  • With the growing importance of knowledge for sustainable competitive advantages and innovation in a volatile environment, many researches on knowledge sharing have been conducted. However, previous researches have mostly relied on the questionnaire survey which has inherent perceptive errors of respondents. The current research has drawn the relationship among primary participant behaviors towards the participation level in knowledge sharing, basically from online user behaviors on Wikipedia, a representative community for online knowledge collaboration. Without users' participation in knowledge sharing, knowledge collaboration for creating knowledge cannot be successful. By the way, the editing patterns of Wikipedia users are diverse, resulting in different revisiting periods for the same number of edits, and thus varying results of shared knowledge. Therefore, we illuminated the participation level of knowledge sharing from two different angles of number of edits and revisiting period. The behavioral dimensions affecting the level of participation in knowledge sharing includes the article talk for public discussion and user talk for private messaging, and community registration, which are observable on Wiki platform. Public discussion is being progressed on article talk pages arranged for exchanging ideas about each article topic. An article talk page is often divided into several sections which mainly address specific type of issues raised during the article development procedure. From the diverse opinions about the relatively trivial things such as what text, link, or images should be added or removed and how they should be restructured to the profound professional insights are shared, negotiated, and improved over the course of discussion. Wikipedia also provides personal user talk pages as a private messaging tool. On these pages, diverse personal messages such as casual greetings, stories about activities on Wikipedia, and ordinary affairs of life are exchanged. If anyone wants to communicate with another person, he or she visits the person's user talk page and leaves a message. Wikipedia articles are assessed according to seven quality grades, of which the featured article level is the highest. The dataset includes participants' behavioral data related with 2,978 articles, which have reached the featured article level, with editing histories of articles, their article talk histories, and user talk histories extracted from user talk pages for each article. The time period for analysis is from the initiation of articles until their promotion to the featured article level. The number of edits represents the total number of participation in the editing of an article, and the revisiting period is the time difference between the first and last edits. At first, the participation levels of each user category classified according to behavioral dimensions have been analyzed and compared. And then, robust regressions have been conducted on the relationships among independent variables reflecting the degree of behavioral characteristics and the dependent variable representing the participation level. Especially, through adopting a motivational theory adequate for online environment in setting up research hypotheses, this work suggests a theoretical framework for the participation level of online knowledge sharing. Consequently, this work reached the following practical behavioral results besides some theoretical implications. First, both public discussion and private messaging positively affect the participation level in knowledge sharing. Second, public discussion exerts greater influence than private messaging on the participation level. Third, a synergy effect of public discussion and private messaging on the number of edits was found, whereas a pretty weak negative interaction effect of them on the revisiting period was observed. Fourth, community registration has a significant impact on the revisiting period, whereas being insignificant on the number of edits. Fifth, when it comes to the relation generated from private messaging, the frequency or depth of relation is shown to be more critical than the scope of relation for the participation level.