• Title/Summary/Keyword: Integration coherent

Search Result 46, Processing Time 0.019 seconds

A Comparison with SNR Performance of Coherent Integration and Non-coherent Integration to Estimate Target Detection Range in Radar System (레이더 시스템에서 목표물 탐지 거리 추정을 위한 코히런트 집적과 비 코히런트 집적의 SNR 성능 비교)

  • Ga, Gwan-U;Ham, Sung-Min;Lee, Kwan-Hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.86-91
    • /
    • 2014
  • This paper compare with SNR performance of coherent integration and non-coherent integration in radar system. This paper to prevent distortion of transmit signal and radar return in radar system is used to pulsed waveform. This paper to estimate target detection range and to compare with SNR performance used to coherent integration performed before the envelope detector and non-coherent integration processed after the envelope detector. Through simulation, SNR performance of coherent integration and non-coherent integration were comparatively analyzed. SNR performance of coherent integration is good proof higher than non-coherent integration.

A Study on Target Direction and Rage Estimation using Radar Single Pulse (레이더 단일 펄스를 이용한 목표물 방향과 거리 추정에 대한 연구)

  • Lee, Kwan-Hyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.107-112
    • /
    • 2014
  • In this paper, we analysed a performance signal to noise ratio about pulse, integration coherent, and integration non coherent system in radar system. It compared existing with proposal method in order to estimation two target direction of arrival. Generally, radar system radiate pulse wave in order to decreasing distortion of return wave and transmission wave. We analysed the performance integration coherent and integration non coherent. Integration coherent is processing system before doing envelop detection, and integration non coherent is processing system after doing envelop detection. Through simulation, we analysed a performance signal to noise ratio to estimation two target range detection and estimated target direction of arrival. We showed that integration coherent system is the most good performance.

An Initial Synchronization Method to Enhance Receive Sensitivity of the GPS Receiver for Reference Stations (기준국용 GPS 수신기의 수신감도 향상을 위한 초기동기 방법)

  • Park Sang-Hyun;Shin Jae-Ho;Park Jeong-Yeol
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.235-240
    • /
    • 2006
  • In order to enhance receive sensitivity in noisy environment, the previous initial synchronization method of GPS receiver for reference stations adopts not only the coherent integration method but also the non-coherent integration method. However, the previous GPS initial synchronization method causes the non-coherent integration loss, which is a dominant factor among the signal acquisition losses in noisy environment. And the non-coherent integration loss increases with the strength of noise signal. In this pa-per, a GPS initial synchronization method is proposed to enhance receive sensitivity of GPS receiver for reference stations in noisy environment. This paper presents that the proposed GPS initial synchronization method suppresses the non-coherent integration loss. Furthermore, with regard to the mean acquisition time, it is shown that the number of the search cells of the proposed GPS initial synchronization method is much fewer than that of the previous GPS initial synchronization method.

  • PDF

A Comparison on Coherent Integration and Non-coherent Integration to Estimate Detection Range about Radar Cross Section in Radar System (레이더 시스템에서 레이더 단면적에 따른 탐지 거리 추정을 위한 코히런트 집적과 비 코히런트 집적에 대한 비교)

  • Ham, Sung-min;Ga, Gwan-u;Lee, Kwan-hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.100-105
    • /
    • 2014
  • This paper comparatively analyze to integration case to have a influence detection range estimation about radar cross section in radar system. This paper estimate detection range used to probability of detection in radar equation that used to swerling case 1 in case of radar cross section is small and used to swerling case 3 in case of radar cross section is large. Through simulation, coherent integration and non-coherent integration about swerling case difference were comparatively analyzed. Through simulation, non-coherent integration case is outstanding detection range and we known that coherent integration don't suitable for detection range estimation.

DSP Architecture for Weak Signal Acquisition in Assisted GPS

  • Cho, Deuk-Jae;Choi, Il-Heung;Moon, Sung-Wook;Lee, Sang-Jeong;Park, Sang-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.33.6-33
    • /
    • 2002
  • For RF sensitivity enhancement, the previous assisted GPS acquisition architecture adopts not only the coherent integration technique but also the non-coherent integration technique since the long coherent integration time increases the number of the frequency search cells. But the non-coherent integration technique induces the squaring loss, which is the dominant factor among the acquisition losses of assisted GPS dealing with weak GPS signals. This paper proposes an efficient architecture for weak signal acquisition in assisted GPS. In this paper, it is explained that the proposed architecture reduces the squaring loss using a modified non-coherent integration technique. Furthermore, it is..

  • PDF

Performance Analysis of Acquisition Methods for DGPS Reference Receiver under Noisy Environment

  • Park, Sang-Hyun;Cho, Deuk-Jae;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.107-112
    • /
    • 2006
  • The previous acquisition method of GPS receiver for reference station adopts not only the coherent integration method but also the non-coherent integration method in order to enhance sensitivity under noisy environment. However, under noisy environment, the previous GPS signal acquisition method causes the non-coherent integration loss which is a major factor among losses that can be caused during GPS signal acquisition. The non-coherent integration loss also increases with the strength of the received noise. This paper has intention of analyzing the performance of the GPS signal acquisition method proposed to effectively enhance sensitivity of DGPS reference receiver under noisy environment. This paper presents that the proposed GPS signal acquisition method suppresses the non-coherent integration loss through post-processing simulation. Furthermore, with regard to the mean acquisition time, it is shown that the number of search cells of the proposed GPS signal acquisition method is much fewer than that of the previous GPS signal acquisition method.

  • PDF

Performance Analysis of a Residual Frequency Estimator for Weak AGPS Signals in Frequency Domain (약 신호 환경의 AGPS를 위한 잔여주파수 추정기의 주파수 영역 성능 분석)

  • Park, Ji-Hee;Im, Hyun-Ja;Song, Seung-Hun;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.720-725
    • /
    • 2010
  • In AGPS method, user position can be obtained even in the shadow region by improving signal sensitivity. A hybrid long integration scheme employing both coherent and non-coherent integration method is commonly used in AGPS receivers. Because coherent loss increases as residual frequency become large, residual frequency should be minimized to maximize coherent integration gain. This paper presents performance analysis of residual frequency estimator using FFT in fine-time assistance AGPS method. Considering the hardware complexity and the estimation accuracy, optimal length of FFT is proposed for GPS L1 C/A signal. Signal sensitivity for estimating the residual frequency is also analysed. By field experimental results, it is found that the residual frequency can be successfully estimated using 1 second snap-shot data when GPS signal strength is larger than -150 dBm and its RMS error is 3Hz.

New Protocol at Fast Scan Mode for Sea-surface Small Target Detection

  • Cha, Sangbin;Park, Sanghong;Jung, Jooho;Choi, Inoh
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.101-107
    • /
    • 2022
  • In this article, we propose a new protocol at fast scan mode for a sea-surface small target detection. The conventional fast scan mode is composed of coherent intrascan integration to suppress sea clutter and non-coherent interscan integration to exclude sea spikes. The proposed method realizes the coherent interscan integration by the new Fourier relationship between carrier-frequency and initial-radial-range, which can be analytically derived by using multiple carrier frequencies at fast scan mode, leading to improved detection performance, compared to the conventional non-coherent methods. In simulations, our proposed method is verified.

Analysis of GPS Signal Acquisition Performance

  • Li, Xiaofan;Manandhar, Dinesh;Shibasaki, Ryosuke
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.229-234
    • /
    • 2006
  • Acquisition is to detect the presence of the GPS signal. Once the signal is detected, the estimated frequency and code phase are passed to a tracking loop to demodulate the navigation data. In order to detect the weak signal, multiple length of data integration is always needed. In this paper, we present five different acquisition approaches based on circular correlation and Fast Fourier Transform (FFT), using coherent as well as non-coherent integration techniques for the multiple length of collected GPS satellite signal. Moreover a general approach of determining the acquisition threshold is introduced based on noise distribution which has been proved effective, and independent of the hardware. In the end of this paper, the processing speed and acquisition gain of each method are illustrated, compared, and analyzed. The results show that coherent approach is much more time consuming compared to noncoherent approaches, and in the case of multiple length of data integration from 2ms to 8ms, the processing times consumed by the fastest non-coherent acquisition method are only 25.87% to 1.52% in a single search, and 34.76% to 1.06% in a global search of those in the coherent acquisition. However, coherent acquisition also demonstrates its better performance in the acquisition gain, and in the case of 8ms of data integration it is 4.23 to 4.41 dB higher than that in the non-coherent approaches. Finally, an applicable scheme of combining coherent and non-coherent acquisition approaches in the development of a real-time Software GPS receiver in the University of Tokyo is provided.

  • PDF

On Analysis Performance for Target Rage Detection Estimation of Radar Cross Section using Swerling Case (스웰링 경우를 이용한 레이더 단면적의 목표물 탐지 거리 추정 성능 분석)

  • Lee, Kwan-Hyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.113-117
    • /
    • 2014
  • This paper comparatively analyze to integration case to have a influence detection range estimation about radar cross section in radar system. This paper estimate detection range used to probability of detection in radar equation that used to swerling case 1 in case of radar cross section is small and used to swerling case 3 in case of radar cross section is large. Through simulation, coherent integration and non-coherent integration about swerling case difference were comparatively analyzed. In the result of comparative analysis, non-coherent integration case is outstanding detection range and we known that coherent integration don't suitable for detection range estimation.