• Title/Summary/Keyword: Integration CAD/Analysis

Search Result 44, Processing Time 0.025 seconds

Development of a Design Information Sharing System Using Network and STEP (네트워크와 STEP 표준을 이용한 설계 정보 공유 시스템의 개발)

  • Cho, Sung-Wook;Choi, Young;Kwon, Ki-Eok;Park, Myung-Jin;Yang, Sang-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.82-92
    • /
    • 1998
  • An international standard for the product model data, STEP, and a standard for the distributed object technology, CORBA, will play a very important role in the future manufacturing environment. These two technologies provide background for the sharing of product data and the integration of applications on the network. This paper describes a prototype CAD/CAE environment that is integrated on the network by STEP and CORBA. Several application servers and client software were developed to verify the proposed concept. The present CAD/CAE environments are composed of several individual software components which are not tightly integrated. They also do not utilize the rapidly expanding network and object technologies for the collaboration in the product design process. In the design process in a large organization, sharing of application resources, design data and analysis data through the network will greatly enhance the productivity. The integration between applications can be supported by two key technologies, CORBA(Common Object Request Broker Architecture) and STEP(Standard for the Exchange of Product Model Bata). The CORBA provides interoperability between applications on different machines in heterogeneous distributed environments and seamlessly interconnects distributed object systems. Moreover, if all the data in the CAD/CAE environment are based on the STEP, then we can exclude all the data conversion problems between the application systems.

  • PDF

Development of a Web-based MDO Framework for Design and Analysis Integration

  • Park, Chang-Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.479-483
    • /
    • 2010
  • The rapid progress of the Internet and network is affecting the engineering design environment as well as business that use Web technologies to enhance their competitive edge. In product development, experts and organization who take part in the design process are often geographically dispersed. Furthermore, different divisions and business often have heterogeneous CAD/CAE systems and methods for expressing product data, and addressing this heterogeneity creates additional costs and increases development time. Managing distributed CAD, CAE and other related systems in an organic and holistic manner from the initial stages of product development is imperative to ensure successful collaboration in the design process. Therefore, this study suggests a Web-based MDO framework to support interfacing and collective use of design and analysis tools.

Development of a System for Visualization of the Plant 3D Design Data Based on ISO 15926 (ISO 15926 기반 플랜트 3D 설계 데이터 가시화를 위한 시스템 개발)

  • Jeon, Youngjun;Kim, Byung Chul;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.145-158
    • /
    • 2015
  • ISO 15926 is an international standard for the sharing and integration of plant lifecycle information. Plant design data consist of logical configuration, equipment specifications, 2D piping and instrument diagrams (P&IDs), and 3D plant models (shape data). Although 3D computer-aided design (CAD) data is very important data across the plant lifecycle, few studies on the exchange of 3D CAD data using ISO 15926 have been conducted so far. For this, we analyze information requirements regarding plant 3D design in the process industry. Based on the analysis, ISO 15926 templates are defined for the representation of constructive solid geometry (CSG) - based 3D design data. Since system environments for 3D CAD modeling and Semantic Web technologies are different from each other, we present system architecture for processing and visualizing plant 3D design data in the Web Ontology Language (OWL) format. Through the visualization test of ISO 15926-based 3D design data for equipment with a prototype system, feasibility of the proposed method is verified.

Development of Web-based MDO Framework for Design and Analysis Integration (설계 및 해석정보를 연계한 웹 기반 다분야통합설계 프레임워크 개발)

  • Park, Chang-Kue;Yang, Young-Soon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.322-328
    • /
    • 2008
  • Recently, the rapid progress of Internet and Network affects engineering design environment as well as Business fields to utilize Web technologies to enhance it's competitively in the world. In product development, experts and organizations actually taking part in the design process are often geographically dispersed. Furthermore, different divisions and businesses often have heterogeneous CAD/CAE systems and methods for expressing product data, and addressing this heterogeneity creates additional costs and causes longer development periods. To ensure successful collaboration in the design process, it is therefore imperative that distributed CAD, CAE, and other related systems be managed in an organic and integrated manner from the initial stages of product development. Therefore, this study suggests Web-based MDO(Multidisciplinary Design Optimization) framework to support interfacing and the collective use of design and analysis tools.

T-spline FEA for Trimmed NURBS Surface (트림 NURBS 곡면의 T-스플라인 유한요소해석)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.135-144
    • /
    • 2009
  • In this present work, spline FEA for the trimmed NURBS surface of the 2D linear elasticity problem is presented. The main benefit of the proposed method is that no additional efforts for modeling of trimmed NURBS surfaces are needed and the information of the trimming curves and trimmed surfaces exported from the CAD system can be directly used for analysis. For this, trimmed elements are searched by using NURBS projection scheme. The integration of the trimmed elements is performed by using the NURBS-enhanced integration scheme. The formulation of constructing stiffness matrix of trimmed elements is presented. In this formulation, the information of the trimming curve is used for calculating the Jacobian as well as for obtaining integration points. The robustness and effectiveness of the proposed method are investigated through various numerical examples.

Multidisciplinary Aircraft Wing Design Using the MDO Framework (MDO 프레임워크 개발을 통한 항공기 날개 통합최적화 설계)

  • Lee, Jae-Woo;Kim, Jong-Hwan;Jeang, Ju-Young;Jeon, Kwon-Su;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.23-33
    • /
    • 2004
  • MDO framework, which provides multidisciplinary system design and optimization environment, requires integration of the analyses codes developed at various computer languages and operating systems, integration of CAD and DBMS, and development of complex GUI. Emphases must be given to the software modification and upgrades in conjunction with the analysis code addition and MDO method implementation. In this study, techniques about system integration and analysis code interface have been studied extensively, and the database design and communication methods which can handle the MDO methods like MDF and CO have been studied. Using the dedicated MDO framework developed for the air vehicle design, the multidisciplinary fighter aircraft wing design has been performed to demonstrate the efficiency and usefulness of the software. Optimum wing configuration is derived using the gradient-based optimization methods within thirty design iterations.

Application of Multi-Frontal Method in Collaborative Engineering Environment

  • Cho, Seong-Wook;Choi, Young;Lee, Gyu-Bong;Kwon, Ki-Eak
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.51-60
    • /
    • 2003
  • The growth of the World Wide Web and the advances in high-speed network access have greatly changed existing CAD/CAE environment. The WWW has enabled us to share various distributed product data and to collaborate in the design process. An international standard for the product model data, STEP, and a standard for the distributed object technology, CORBA, are very important technological components for the interoperability in the advanced design and manufacturing environment. These two technologies provide background for the sharing of product data and the integration of applications on the network. This paper describes a distributed CAD/CAE environment that is integrated on the network by CORBA and product model data standard STEP. Several prototype application modules were implemented to verify the proposed concept and the test result is discussed. Finite element analysis server are further distributed into several frontal servers for the implementation of distributed parallel solution of finite element system equations. Distributed computation of analysis server is also implemented by using CORBA for the generalization of the proposed method.

Product Data Model ing for Engineer ing Database (엔지니어링 데이터베이스를 위한 제품데이터의 모델링)

  • 김철한;김진홍
    • The Journal of Society for e-Business Studies
    • /
    • v.1 no.2
    • /
    • pp.93-116
    • /
    • 1996
  • Nowadays, there are many efforts to integrate CAD/CAM and other systems. The key of integration is engineering database implementation through the product data definition. In this paper, we suggest the product data definition and their properties for electronic consumer product throughout the requirement analysis for engineering database. Electronic consumer products include electric/electronic parts. as well as mechanical part which mainly compose of machinery. The paper is composed of three parts: the first is analysis about engineering data base. the second is understanding of product data structure and properties. and the last is modeling of product data including static and dynamic characteristics.

  • PDF

Application of Quantitative Assessment of Coronary Atherosclerosis by Coronary Computed Tomographic Angiography

  • Su Nam Lee;Andrew Lin;Damini Dey;Daniel S. Berman;Donghee Han
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.518-539
    • /
    • 2024
  • Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool for diagnosing and risk-stratifying patients with suspected coronary artery disease (CAD). Recent advancements in image analysis and artificial intelligence (AI) techniques have enabled the comprehensive quantitative analysis of coronary atherosclerosis. Fully quantitative assessments of coronary stenosis and lumen attenuation have improved the accuracy of assessing stenosis severity and predicting hemodynamically significant lesions. In addition to stenosis evaluation, quantitative plaque analysis plays a crucial role in predicting and monitoring CAD progression. Studies have demonstrated that the quantitative assessment of plaque subtypes based on CT attenuation provides a nuanced understanding of plaque characteristics and their association with cardiovascular events. Quantitative analysis of serial CCTA scans offers a unique perspective on the impact of medical therapies on plaque modification. However, challenges such as time-intensive analyses and variability in software platforms still need to be addressed for broader clinical implementation. The paradigm of CCTA has shifted towards comprehensive quantitative plaque analysis facilitated by technological advancements. As these methods continue to evolve, their integration into routine clinical practice has the potential to enhance risk assessment and guide individualized patient management. This article reviews the evolving landscape of quantitative plaque analysis in CCTA and explores its applications and limitations.

Isogeometric Shape Design Sensitivity Analysis of Mindlin Plates (민들린 평판의 아이소-지오메트릭 형상 설계민감도 해석)

  • Lee, Seung-Wook;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • In this paper, a shape design sensitivity analysis(DSA) method is presented for Mindlin plates using an isogeometric approach. The isogeometric method possesses desirable advantages; the representation of exact geometry and the higher order inter-element continuity, which lead to the fast convergence of solution as well as accurate sensitivity results. Unlike the finite element methods using linear shape functions, the isogeometric method considers the exact normal vector and curvature of the CAD geometry, taking advantages of higher order NURBS basis functions. A selective reduced integration(SRI) technique is incorporated to overcome the difficulty of 'shear locking' phenomenon. This simple technique is surprisingly helpful for the accuracy of the isogeometric shape sensitivity without complicated formulation. Through the numerical examples of plate bending problems, the accuracy of the proposed isogeometric analysis method is compared with that of finite element one. Also, the isogeometric shape sensitivity turns out to be very accurate when compared with finite difference sensitivity.