• Title/Summary/Keyword: Integration CAD/Analysis

Search Result 44, Processing Time 0.035 seconds

A Study on the Structural Optimization for CAD/CAE Integration (CAD/CAE 통합을 위한 구조설계 최적화에 관한 연구)

  • Park, Chang-Kue;Yang, Young-Soon;Ruy, Won-Son;Jang, Beom-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.127-134
    • /
    • 2009
  • In product development, CAD and CAE systems taking part in the design process were individually developed. Furthermore, in product development, different divisions and businesses often have heterogeneous CAD/CAE systems and methods for expressing product data, and addressing this heterogeneity creates additional costs and causes longer development periods. To ensure successful collaboration in the design process, it is therefore imperative that different CAD, CAE, and other related systems be managed in an organic and integrated manner from the initial stages of product development. Therefore, this study suggests an integrated CAD/CAE system including optimization in a more effective and integrated manner but also to support interfacing and the collective use of design and analysis tools. To validate the proposed method, a stiffened plate example is taken as an example. It is found that the proposed method could overcome the bottleneck of CAD and CAE such as transferability of data, though CATIA and ANSYS are used at the moment. Besides, carrying out an optimization process during the CAE process is another essential parts for the structural optimization process.

Requirement Analysis on Lightweight CAD Models in Ship PLM Environment and Its Application Examples (조선 PLM 환경에서 경량 CAD 모델에 대한 요구사항 분석 및 적용 사례)

  • Cheon, Sanguk;Lee, Ji-Hoon;Park, Kwang-Phil;Suh, Heung-Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.299-307
    • /
    • 2013
  • Introduction of PLM in domestic shipyards is being retarded as ship PLM has yet to firm up return of investment and process integration. To implement a ship PLM system, it is required to share ship CAD model data in various design and manufacturing environments. Lightweight CAD models provide a promising solution for sharing CAD models in the product life cycle, which can expedite implementation of ship PLM in domestic shipyards in the near future. Compared to proprietary CAD models, it is easy for lightweight CAD models to be interfaced with various application systems and be connected to manufacturing information. In this paper, the reason why lightweight CAD models are necessary to implement a ship PLM system is addressed and current implementation results are introduced.

A locally refinable T-spline finite element method for CAD/CAE integration

  • Uhm, Tae-Kyoung;Kim, Ki-Seung;Seo, Yu-Deok;Youn, Sung-Kie
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.225-245
    • /
    • 2008
  • T-splines are recently proposed mathematical tools for geometric modeling, which are generalizations of B-splines. Local refinement can be performed effectively using T-splines while it is not the case when B-splines or NURBS are used. Using T-splines, patches with unmatched boundaries can be combined easily without special techniques. In the present study, an analysis framework using T-splines is proposed. In this framework, T-splines are used both for description of geometries and for approximation of solution spaces. This analysis framework can be a basis of a CAD/CAE integrated approach. In this approach, CAD models are directly imported as the analysis models without additional finite element modeling. Some numerical examples are presented to illustrate the effectiveness of the current analysis framework.

Development of Precision Inspection Technique for Aircraft Parts Having Very Thin Features on CAD/CAI Integration (CAD/CAI 통합에 기초한 박형 단면을 가지는 항공기 터빈블레이드의 정밀측정기술 개발)

  • Park, Hui-Jae;An, U-Jeong;Kim, Wang-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1743-1752
    • /
    • 1996
  • In this paper, a precision inspection technique using CAD/CAI integration is proposed for the parts having very thin and sharp 3 dimensional curve features. The technique begings with feature reconstruction of turbine blades which have 3 dimensional combined feometry, such as splines, and thin circles. The alifnment procedures consistsb of two phases-rough and fine phases : rough phase alignment is based on the conventional 6 point5s probing on the clear cut surfacef, and fine phase alignment is based on the intial measurement on the 3 dimensional curved parts using an lterative measurement feed-back least sequares technique for alignment. Forf the analysis of profile tolerance of parts, the actual measured points are obtained by finding the closet points on the CAD geometry by the developed subdivision technique and the Tschebycheff norm is applied based on iterative fashion, giving accurate profile tolerance value. The developed inspection technique is applied to practical procedures of blade manufacturing and demonstrated high performance.

Concurrent Engineering Design Optimization of Composite Structures (복합재 구조물의 동시공학 설계최적화)

  • 김건인;이희각
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.304-312
    • /
    • 1996
  • Concepts, methods and tools for interactive CAD-based concurrent engineering design optimization of mechanical/structural systems and components which are critical in terms of cost development time, functionality and quality, are presented. The emphasis is on implementation of methods and capabilities for the optimization of composite structural system, and the integration of design process and manufacturing process of composite structures into standard CAD-based concurrent engineering environment The optimization of composite fuselage structures are performed under concurrent engineering environment for the example.

  • PDF

A Study on CAD/CAE Integration for Design Optimization of Mold Cooling Problem (CAD와 유한요소해석을 연계한 금형 냉각문제의 설계최적화에 대한 연구)

  • 오동길;류동화;최주호;김준범;하덕식
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.93-101
    • /
    • 2004
  • In mechanical design, optimization procedures have mostly been implemented solely by CAE codes combined by optimization routine, in which the model is built, analyzed and optimized. In the complex geometries, however, CAD is indispensable tool for the efficient and accurate modeling. This paper presents a method to carry out optimization, in which CAD and CAE are used for modeling and analysis respectively and integrated in an optimization routine. Application Programming Interface (API) function is exploited to automate CAD modeling, which enables direct access to CAD. The advantage of this method is that the user can create very complex object in Parametric and automated way, which is impossible in CAE codes. Unigraphics and ANSYS are adopted as CAD and CAE tools. In ANSYS, automated analysis is done using codes made by a script language, APDL(ANSYS Parametric Design Language). Optimization is conducted by VisualDOC and IDESIGN respectively. As an illustrative example, a mold design problem is studied, which is to minimize temperature deviation over a diagonal line of the surface of the mold in contact with hot glass.

Development of DS/FDM-a Robust CAD-based Optimal Design System and Its Application to Engineering Structures (CAD 기반 최적설계 시스템인 DS/FDM의 개발과 공학 구조물에 대한 적용)

  • Han, Jeong-Sam;Uphaus, Frank;Kim, Yeong-Ryeol;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.720-724
    • /
    • 2000
  • In this paper, we introduce a seamlessly integrated CAD-based design system (DS) for CAD modeling, engineering analysis, and optimal design which has been developed in CCED at KAIST, The key points of this integrating philosophy are to make full use of a parametric CAD program as the platform of integration and to adopt finite difference method for design sensitivity analysis in optimization process to get robustness and versatility. Design variables are directly selected by clicking CAD model parameters and all the analysis and design activities are menu-driven. This integrated program, named as DS/FDM, runs on Windows NT or Unix and FE analyses are performed at a remote Unix-workstation for multiple users. Application examples include shape optimal design of a belt clip that fits onto a portable electronic device and a bracket to show performance of DS/FDM with shell and tetra solid elements. This software is found efficient and effective fur shape design and size design of engineering structures.

  • PDF

Integration of Shell FEA with Geometric Modeling Based on NURBS Surface Representation (NURBS 곡면기반의 기하학적 모델링과 셀 유한요소해석의 연동)

  • Choi, Jin-Bok;Roh, Hee-Yuel;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.105-112
    • /
    • 2007
  • The linkage framework of geometric modeling based on NURBS(Non-Uniform Rational B-Spline) surface and shell finite analysis is developed in the present study. For this purpose, geometrically exact shell finite element is implemented. NURBS technology is employed to obtain the exact geometric quantities for the analysis. Especially, because NURBS is the most powerful and wide-spread method to represent general surfaces in the field of computer graphics and CAD(Computer Aided Design) industry, the direct computation of surface geometric quantities from the NURBS surface equation without approximation shows great potential for the integration between geometrically exact shell finite element and geometric modeling in the CAD systems. Some numerical examples are given to verify the performance and accuracy of the developed linkage framework. In additions, trimmed surfaces with some cutouts are considered for more practical applications.

Development of a CFD Program for Cold Gas Flow Analysis in a High Voltage Circuit Breaker Using CFD-CAD Integration (CFD-CAD 통합해석을 이용한 초고압 차단기 내부의 냉가스 유동해석 프로그램 개발)

  • Lee, Jong-Cheol;An, Hui-Seop;O, Il-Seong;Choe, Jong-Ung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.5
    • /
    • pp.242-248
    • /
    • 2002
  • It is important to develop new effective technologies to increase the interruption capacity and to reduce the size of a UB(Gas Circuit Breakers). Major design parameters such as nozzle geometries and interrupting chamber dimensions affect the cooling of the arc and the breaking performance. But it is not easy to test real GCB model in practice as in theory. Therefore, a simulation tool based on a computational fluid dynamics(CFD) algorithm has been developed to facilitate an optimization of the interrupter. Special attention has been paid to the supersonic flow phenomena between contacts and the observation of hat-gas flow for estimating the breaking performance. However, there are many difficult problems in calculating the flow characteristics in a GCB such as shock wave and complex geometries, which may be either static or in relative motion. Although a number of mesh generation techniques are now available, the generation of meshes around complicated, multi-component geometries like a GCB is still a tedious and difficult task for the computational fluid dynamics. This paper presents the CFD program using CFB-CAD integration technique based on Cartesian cut-cell method, which could reduce researcher's efforts to generate the mesh and achieve the accurate representation of the geometry designed by a CAD tools.

Development of PC-based FEA system (Microcomputer용 유한요소 해석시스템의 개발)

  • 심정수;김창헌;이종원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.260-263
    • /
    • 1987
  • In this study, PC-based FEA system (Micro-STANS) running on the 16 bit microcomputer is developed. This system has powerful pre & post processing function using computer graphics, and is interfaced to AutoCAD system which is most popular PC-CAD system, making it possible to accomplish the concept of real integration between design and analysis. This system which has truss , beam plate & shell elements in the element library, can perform linear static analysis.

  • PDF