• 제목/요약/키워드: Integrated-optic sensor

검색결과 32건 처리시간 0.029초

회절격자가 집적된 일회용 다중채널 SPR 생체분자 검출 칩 (A Disposable Grating-Integrated Multi-channel SPR Sensor Chip for Detection of Biomolecule)

  • 진영현;조영호
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.147-154
    • /
    • 2009
  • This paper presents a grating~integrated SPR (Surface Plasmon Resonance) sensor chip for simple and inexpensive biomolecule detection. The grating-integrated SPR sensor chip has two sensing channels having a nano grating for SPR coupling. An external mirror is used for multi channel SPR sensing. The present sensor chip replaces bulky and expensive optical components, such as fiber-optic switches or special shaped prisms, resulting in a simple and inexpensive wavelength modulated multi-channel SPR sensing system. We fabricate a SPR sensor chip integrated with 835 nm-pitch gratings by a micromolding technique to reduce the fabrication cost. In the experimental characterization, the refractive index sensitivity of each sensing channel is measured as $321.8{\pm}8.1nm$/RI and $514.3{\pm}8.lnm$/RI, respectively. 0.5uM of the target biomolecule (streptavidin) was detected by a $1.13{\pm}0.16nm$ shift of the SPR dip in the 10%-biotinylated sample channel, while the SPR dip in the reference channel for environmental perturbation monitoring remained at the same position. From the experimental results, multi-channel biomolecule detection capability of the present grating-integrated SPR sensor chip has been verified. On the basis of the preliminary experiments, we successfully measured the binding reaction rate for the $2\;nM{\sim}200\;nM$ monoclonal-antibiotin, thus verifying biomolecule concentration detectability of the present SPR sensor chip. The binding reaction rates measured from the present SPR sensor chip agredd well with those from a commercialized SPR sensor.

Si3N4 립-광도파로의 두-수평모드 파워결합과 소산파 기반 집적광학 바이오센서 설계 (Design of Integrated-Optic Biosensor Based on the Evanescent-Field and Two-Horizontal Mode Power Coupling of Si3N4 Rib-Optical Waveguide)

  • 정홍식
    • 센서학회지
    • /
    • 제29권3호
    • /
    • pp.172-179
    • /
    • 2020
  • We studied an integrated-optic biosensor configuration that operates at a wavelength of 0.63 ㎛ based on the evanescent-wave and two horizontal mode power coupling of Si3N4 rib-optical waveguides formed on a Si/SiO2/Si3N4/SiO2 multilayer thin films. The sensor consists of a single-mode input waveguide, followed by a two-mode section which acts as the sensing region, and a Y-branch output for separating the two output waveguides. The coupling between the two propagating modes in the sensing region produces a periodically repeated optical power exchanges along the propagation. A light power was steered from one output channel to the other due to the change in the cladding layer (bio-material) refractive index, which affected the effective refractive index (phase-shift) of two modes through evanescent-wave. Waveguide analyses based on the rib optical waveguide dimensions were performed using various numerical computational software. Sensitivity values of 12~23 and 65~165 au/RIU, respectively for the width and length of 4 ㎛, and 3841.46 and 26250 ㎛ of the two-mode region corresponding to the refractive index range 1.36~1.43 and 1.398~1.41, respectively, were obtained.

Development a glucose-FIA system with a fiber optic oxygen sensor

  • Sohn, Ok-Jae;Lam, Tuan-Hung;Rhee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.730-734
    • /
    • 2005
  • 본 연구에서는 광섬유 산소센서를 기반으로 글루코오스 모니터링용 FIA 시스템을 개발하였다. 운반용액의 낮은 유속에서도 검출가능 하였으며, 산소전극을 이용한 글루코오스-FIA 시스템보다 넓은 범위의 글루코오스 농도를 검출할 수 있었다. 향후, 광섬유 센서를 이용하여 생물반응기에서 기질로 사용되는 글루코오스뿐만 아니라 용존산소, pH, $CO_2$와 같이 다양한 인자들의 모니터링 시스템을 개발하고자 한다.

  • PDF

비대칭 $Ti:LiNbO_3$ Mach-Zehnder 간섭기를 이용한 집적광학 전계센서 제작 및 성능에 관한 연구 (A Study on the Fabrication of Integrated Optical Electric-Field Sensor and Performance utilizing Asymmetric $Ti:LiNbO_3$ Mach-Zehnder Interferometer)

  • 하정호;정홍식
    • 전자공학회논문지
    • /
    • 제49권10호
    • /
    • pp.128-134
    • /
    • 2012
  • 전계 측정시스템에서 센서 감지부로 $1.3{\mu}m$ 파장대역에서 동작하는 비대칭 구조의 집적광학 Mach-Zehnder 광변조기를 구현하였다. BPM 전산모사를 통해서 소자의 동작 특성을 검증하였고, $LiNbO_3$에 Ti 확산방법으로 구현된 채널 광도파로에 평판형 안테나가 부착된 집중 전극구조 배열하여 전계 센서를 제작하였다. 500 KHz, 5 MHz 각각의 주파수에서 측정 가능한 최소 전계는 1.02 V/m, 6.91 V/m로 평가 되었으며, 이에 대응되는 각 주파수에서 ~35 dB, ~10 dB의 다이나믹 범위가 측정되었다.

Fiber optic shape sensor system for a morphing wing trailing edge

  • Ciminello, Monica;Ameduri, Salvatore;Concilio, Antonio;Dimino, Ignazio;Bettini, Paolo
    • Smart Structures and Systems
    • /
    • 제20권4호
    • /
    • pp.441-450
    • /
    • 2017
  • The objective of this work is to present a conceptual design and the modelling of a distributed sensor system based on fiber optic devices (Fiber Bragg Grating, FBG), aimed at measuring span-wise and chord-wise variations of an adaptive (morphing) trailing edge. The network is made of two different integrated solutions for revealing deformations of the reference morphing structure. Strains are confined to typical values along the span (length) but they are expected to overcome standard ranges along the chord (width), up to almost 10%. In this case, suitable architectures may introduce proper modulations to keep the measured deformation low while preserving the information content. In the current paper, the designed monitoring system combines the use of a span-wise fiber reinforced patch with a chord-wise sliding beam. The two elements make up a closed grid, allowing the reconstruction of the complete deformed shape under the acceptable assumption that the transformation refers to regular geometry variations. Herein, the design logic and some integration issues are reported. Preliminary experimental test results are finally presented.

Optimization of Thermo-Optic Parameters for Temperature-Insensitive LPWG Refractometers

  • Lee, Dong-Seok;Kim, Kyong-Hon;Hwang, Seok-Hyun;Lee, Min-Hee;Lee, El-Hang
    • ETRI Journal
    • /
    • 제28권6호
    • /
    • pp.739-744
    • /
    • 2006
  • In this paper, we report numerically calculated results of testing a temperature-insensitive refractive sensor based on a planar-type long-period waveguide grating (LPWG). The LPWG consists of properly chosen polymer materials with an optimized thermo-optic coefficient for the core layer in a four-layer waveguide structure. The resonant wavelength shift below the spectral resolution of the conventional optical spectrum analyzer is obtained accurately over a temperature change of ${\pm}7.5^{\circ}C$ even without any temperature control. The refractive index sensitivity of the proposed grating scheme is about 0.004 per resonant wavelength shift of 0.1 nm for an optimized thermo-optic coefficient.

  • PDF

Common-path Optical Coherence Tomography for Biomedical Imaging and Sensing

  • Kang, Jin-U.;Han, Jae-Ho;Liu, Xuan;Zhang, Kang
    • Journal of the Optical Society of Korea
    • /
    • 제14권1호
    • /
    • pp.1-13
    • /
    • 2010
  • This paper describes a development of a fiber optic common-path optical coherence tomography (OCT) based imaging and guided system that possess ability to reliably identify optically transparent targets that are on the micron scale; ability to maintain a precise and safe position from the target; ability to provide spectroscopic imaging; ability to imaging biological target in 3-D. The system is based on a high resolution fiber optic Common-Path OCT (CP-OCT) that can be integrated into various mini-probes and tools. The system is capable of obtaining >70K A-scan per second with a resolution better than $3\;{\mu}m$. We have demonstrated that the system is capable of one-dimensional real-time depth tracking, tool motion limiting and motion compensation, oxygen-saturation level imaging, and high resolution 3-D images for various biomedical applications.

Si3N4 립-광도파로 기반 다중모드 간섭기와 소산파를 이용하는 집적광학 바이오센서 설계 및 성능에 관한 연구 (A Study on the Design and Performance of Integrated-Optic Biosensor utilizing the Multimode Interferometer based on Si3N4 Rib-Optical Waveguide and Evanescent-Wave)

  • 정홍식
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.409-418
    • /
    • 2020
  • 본 논문에서는 Si/SiO2/Si3N4/SiO2 적층 구조를 갖는 Si3N4 립-광도파로 기반의 다중모드 간섭기를 활용하는 집적광학 소산파 바이오센서에 대해서 서술하였다. 다중모드 간섭기의 이론적 배경에 대해서 검토하였고, 전산해석을 통해서 다중모드 간섭기 구조와 설계과정을 제시하였다. 다중모드 간섭기의 제원 (길이, 폭)이 소자 성능에 어떻게 영향을 미치는지 분석하였다. 분석물질의 굴절률 변화가 다중모드 간섭기의 모드 패턴형성 위치와 출력 광파워에 많은 영향을 미치고 있음을 확인하였고, 이 특성을 적용할 경우 집적광학 바이오센서로 활용 가능함을 입증하였다.

SOI 슬롯 광 도파로 기반 단일 및 삽입-분기 채널 링-공진형 바이오·케미컬 집적광학 센서의 제원에 대한 감도 해석 (Sensitivity Analysis for Specifications of Silicon-on-Insulator (SOI) Slot Optical Waveguide-based Single and Add-drop Channel Ring-resonant Biochemical Integrated Optical Sensors)

  • 장재식;정홍식
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.107-114
    • /
    • 2022
  • The effects of ring radius and coupling spacing on the free spectral range (FSR), full width at half maximum (FWHM), quality factor, and sensitivity of single-channel and add-drop channel slot ring resonators were systematically investigated using FIMMPROP and PICWAVE numerical software. The single-channel ring resonator exhibited better characteristics, namely, a wider FSR and narrower FWHM compared with the add-drop structure; thus, it was evaluated to be more suitable for biochemical sensors. The FSR, FWHM, quality factor, and sensitivity for a single channel ring resonator with a radius of 59.4 ㎛ and coupling gap of 0.5 ㎛ were 2.4 nm, 0.087 nm, 17677, and 550 [nm/RIU], respectively.

Multiplexed Hard-Polymer-Clad Fiber Temperature Sensor Using An Optical Time-Domain Reflectometer

  • Lee, Jung-Ryul;Kim, Hyeng-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.37-44
    • /
    • 2016
  • Optical fiber temperature sensing systems have incomparable advantages over traditional electrical-cable-based monitoring systems. However, the fiber optic interrogators and sensors have often been rejected as a temperature monitoring technology in real-world industrial applications because of high cost and over-specification. This study proposes a multiplexed fiber optic temperature monitoring sensor system using an economical Optical Time-Domain Reflectometer (OTDR) and Hard-Polymer-Clad Fiber (HPCF). HPCF is a special optical fiber in which a hard polymer cladding made of fluoroacrylate acts as a protective coating for an inner silica core. An OTDR is an optical loss measurement system that provides optical loss and event distance measurement in real time. A temperature sensor array with the five sensor nodes at 10-m interval was economically and quickly made by locally stripping HPCF clad through photo-thermal and photo-chemical processes using a continuous/pulse hybrid-mode laser. The exposed cores created backscattering signals in the OTDR attenuation trace. It was demonstrated that the backscattering peaks were independently sensitive to temperature variation. Since the 1.5-mm-long exposed core showed a 5-m-wide backscattering peak, the OTDR with a spatial resolution of 40 mm allows for making a sensor node at every 5 m for independent multiplexing. The performance of the sensor node included an operating range of up to $120^{\circ}C$, a resolution of $0.59^{\circ}C$, and a temperature sensitivity of $-0.00967dB/^{\circ}C$. Temperature monitoring errors in the environment tests stood at $0.76^{\circ}C$ and $0.36^{\circ}C$ under the temperature variation of the unstrapped fiber region and the vibration of the sensor node. The small sensitivities to the environment and the economic feasibility of the highly multiplexed HPCF temperature monitoring sensor system will be important advantages for use as system-integrated temperature sensors.