• Title/Summary/Keyword: Integrated photonics

Search Result 199, Processing Time 0.025 seconds

Heterogeneously Integrated Thin-film Lithium Niobate Electro-optic Modulator Based on Slot Structure

  • Li, Xiaowei;Xu, Yin;Huang, Dongmei;Li, Feng;Zhang, Bo;Dong, Yue;Ni, Yi
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.323-331
    • /
    • 2022
  • Electro-optic modulator (EOM) takes a vital role in connecting the electric and optical fields. Here, we present a heterogeneously integrated EOM based on the lithium niobate-on-insulator (LNOI) platform. The key modulation waveguide structure is a field-enhanced slot waveguide formed by embedding silicon nanowires in a thin-film lithium niobate (LN), which is different from the previously reported LN ridge or etchless LN waveguides. Based on such slot structure, optical mode field area is reduced and enhanced electric field in the slot region can interact well with LN material with high Electro-optic (EO) coefficient. Therefore, the improvements in both aspects have positive effects on enhancing the modulation performance. From results, the corresponding EOM by adding such modulation waveguide structure achieves better performance, where the key half-wave-voltage-length product (V𝜋L) and 3 dB EO bandwidth are 1.78 V·cm and 40 GHz under the electrode gap width of only 6 ㎛, respectively. Moreover, Lower V𝜋L can also be achieved. With these characteristics, such field-enhanced waveguide structure could further promote the development of LNOI-based EOM.

Design of Novel Hybrid Optical Modulator Incorporating Electro-Optic Polymer Waveguide into Silicon Photonic Crystal (실리콘/폴리머 물질 기반의 하이브리드 광 결정 광변조기 설계)

  • Sung, Jun-Ho;Lee, Min-Woo;Choi, Chul-Hyun;Lee, Seung-Gol;Park, Se-Guen;Lee, El-Hang;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.187-192
    • /
    • 2008
  • The design and analysis of a novel photonic crystal electro-optic modulator are presented in this paper. The device incorporates an electro-optic (EO) polymer slot waveguide into the center of a silicon photonic crystal waveguide. In this device, strong optical confinement in the EO polymer core and small group velocity from the photonic crystal structure provide a surprise enhancement of the EO effect.

Athermalization of an Optical System Based on Lens Shape and Assembly Method

  • Xu, Sihua;Peng, Xiaoqiang;Tie, Guipeng;Guan, Chaoliang;Hu, Hao;Xiong, Yupeng
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.429-437
    • /
    • 2019
  • Temperature adaptability is an important metric for evaluating the performance of an optical system. The temperature characteristics of the optical system are closely related to the material and shape of its lens. In this paper, we establish a mathematical model relating the temperature characteristics to the shape and material of the lens. Then a novel assembly structure that can solve the lens constraint and positioning problem is proposed. From those basics, the correctness of the theoretical model and the effectiveness of the assembly structure are verified through simulated analysis of the imaging quality of the optical system, whose operating temperature range is $-60{\sim}100^{\circ}C$.

Development a glucose-FIA system with a fiber optic oxygen sensor

  • Sohn, Ok-Jae;Lam, Tuan-Hung;Rhee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.730-734
    • /
    • 2005
  • Flow injection analysis (FIA) system was developed to monitor glucose concentrations in biotechnological processes. A fiber optic oxygen sensor was used to determine consumption of oxygen concentration by reaction of immobilized glucose oxidase (GOD). The GOD was immobilized on VA-Epoxy carrier and integrated into FIA system. A calibration curve for glucose was obtained in the range of 0.5 $g/L{\sim}3.0$ g/L.

  • PDF

Fabrication and Measurement of All-Optical Logic Device by Using Selective Area Growth Technology (선택영역성장 기술을 이용한 전광 논리소자용 광소자의 제작 및 측정)

  • Son, Chang-Wan;Yoon, Tae-Hoon;Lee, Seok;Nakano, Yoshiaki
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.50-55
    • /
    • 2007
  • Using the Selective Area Growth (SAG) technology of Metal Organic Chemical Vapor Deposition (MOCVD), we successfully integrated an active device and passive devices on the same substrate. In other words, we integrated a Semiconductor Optical Amplifier (SOA) as an active device and an S-bend waveguide and a Multi Mode Interference (MMI) waveguide as passive devices. The SOA is successfully integrated with passive devices on the same substrate. The Cross-Gain Modulation (XGM) characteristic of the integrated SOA and the loss of an MMI and an S-bend waveguide were measured. Measured XGM characteristics of the SOA showed an extinction ratio of 8.82 dB. The total loss of the MMI and S-bend waveguide was 18 dB.

Analysis of a Nonlinear Integrated-Mirror Etalon by the Characteristic Matrix Method (특성행렬을 이용한 비선형 집적거울 Etalon의 해석)

  • 김덕봉
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.317-322
    • /
    • 1993
  • In this paper we propose a method to analyze the nonlinear behavior of an integrated-mirror etalon by the characteristic matrix method. If the dependence of the refractive index and the absorption coefficient upon the light intensity are known, we can couple this with an equation by which we can evaluate the light intensity distribution inside an etalon for the given values of the refractive index and the absorption coefficient. By solving these coupled equations by the iteration method, we evaluate the transmission characteristics of a nonlinear integrated-mirror etalon. By the characteristic matrix method, we have demonstrated the static and dynamic bistable behavior of a nonlinear integrated-mirror etalon.

  • PDF

Frequency Response Estimation of 1.3 ㎛ Waveguide Integrated Vertical PIN Type Ge-on-Si Photodetector Based on the Analysis of Fringing Field in Intrinsic Region

  • Seo, Dongjun;Kwon, Won-Bae;Kim, Sung Chang;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.510-515
    • /
    • 2019
  • In this paper, we introduce a 1.3-㎛ 25-GHz waveguide-integrated vertical PIN type Ge-on-Si photodetector fabricated using a multi-project wafers service based on fringing field analysis in the depletion region. In general, 1.3-㎛ photodetectors fabricated using a commercial foundry service can achieve limited bandwidths because a significant amount of photo-generated carriers are located within a few microns from the input along the device length, and they are influenced by the fringing field, leading to a longer transit time. To estimate the response time, we calculate the fringing field in that region and the transit time using the drift velocity caused by the field. Finally, we compare the estimated value with the measured one. The photodetector fabricated has a bandwidth of 20.75 GHz at -1 V with an estimation error of <3 GHz and dark current and responsivity of 110 nA and 0.704 A/W, respectively.

Hybrid Square-Lattice Photonic Crystal Fiber with Broadband Single-Mode Operation, High Birefringence, and Normal Dispersion

  • Kim, Soeun;Lee, Yong Soo;Lee, Chung Ghiu;Jung, Yongmin;Oh, Kyunghwan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.449-455
    • /
    • 2015
  • In this study we propose a new photonic crystal fiber (PCF) design that simultaneously offers broadband single-mode operation, high birefringence, and large normal dispersion in the optical-communication wavelength regime. The waveguide is based on a hybrid square-lattice PCF (HS-PCF) that has circular air holes of two different diameters alternating in the cladding, plus a pure silica defect at the center. The optical properties of the guided modes are analyzed numerically by the finite-element method (FEM) with a perfectly matched layer as the boundary condition. The optimized HS-PCF has a dispersion coefficient of $-601.67\;ps\;nm^{-1}\;km^{-1}$ and a high birefringence of $1.025{\times}10^{-2}$ at $1.55{\mu}m$. In addition, over the S+C+L+U wavelength bands the proposed HS-PCF with ultraflat birefringence with a slope on the order of $10^{-5}$.

Microwave Instantaneous Frequency Measurement (IFM) Approach Based on an Integrated Photonic Ti:LiNbO3 Y Branch

  • Zhang, Changsheng;Zhang, Jiahong;Zhao, Zhengang
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.361-367
    • /
    • 2020
  • An approach based on an integrated photonic Ti:LiNbO3 Y branch has been proposed, designed, and analyzed for the microwave instantaneous frequency measurement (IFM). By designing the Y branch with length L = 6545 ㎛ and refractive index NTE - NTM = 0.0764, a complementary optical filter with free spectral range (FSR) of 600 GHz is constituted, which results in a maximum measureable frequency of 300 GHz being obtained. Theoretical analysis on the temperature stability of the Ti:LiNbO3 Y branch shows that the FSR variation of the complementary filter is 0.3% for the temperature change of 100 K, which indicates that the IFM approach will have a better stability. All these results demonstrate that the proposed IFM approach has potential capability to be used for the increasingly higher microwave IFM with better stability.

Approach for Microwave Frequency Measurement Based on a Single Photonic Chip Combined with a Phase Modulator and Microring Resonator

  • Zhang, Jiahong;Zhu, Chuyi;Yang, Xiumei;Li, Yingna;Zhao, Zhengang;Li, Chuan
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.576-581
    • /
    • 2018
  • A new approach for identification of a microwave frequency using an integrated optical waveguide chip, combined with a phase modulator (PM) and two microring resonators (MRRs), is proposed, theoretically deduced, and verified. By wavelength tuning to set the PM under the condition of a double side band (DSB), the measurement range can be started from the dc component, and the measurement range and response slope can be adjusted by designing the radius and transmission coefficient of the MRR. Simulations reveal that the amplitude comparison function (ACF) has a monotonic relationship from dc to 32.5 GHz, with a response slope of 5.15 dB under conditions of DSB modulation, when the radius values, transmission coefficients, and the loss factors are designed respectively as $R_1=400{\mu}m$, $R_2=600{\mu}m$, $t_1=t_2=0.63$, and ${\gamma}_1={\gamma}_2=0.66$. Theoretical calculations and simulation results both indicate that this new approach has the potential to be used for measuring microwave frequencies, with the advantages of compact structure and superior reconfigurability.