• Title/Summary/Keyword: Integrated guidance and control

Search Result 52, Processing Time 0.032 seconds

Integrated Simulation of Descent Phase using the RCS jet for a Lunar Lander (RCS jet을 고려한 달착륙선의 Descent phase 통합 시뮬레이션)

  • Min, Chan-Oh;Jeong, Seun-Woo;Lee, Dae-Woo;Cho, Keum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.473-480
    • /
    • 2013
  • Researches for various lunar landing technologies are in progress for the lunar exploration program planned for early 2020s in Korea. This paper shows the integrated simulation for safe lunar landing guidance/control system in powered descent phase. Generally, the lunar lander uses on/off(bang-bang) controller to control the RCS jet thrusters instead of proportional controller. In this paper, the on/off controller using phase-plane switching function, and thruster selection algorithm to control sixteen thrusters are applied. Also additional guidance commands are calculated by a proposed fuzzy logic guidance algorithm. The simulation results show that lunar lander can follow a reference trajectory which is generated by optimization method, then land on the surface safely.

A Linear Matrix Inequality Optima Control for the Tracking of an Autonomous Gliding Vehicle (자동 미끄럼 이동 로봇의 경로 추종을 위한 LMI 최적 제어 기법)

  • 이진우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.335-335
    • /
    • 2000
  • Applications such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs) and the time varying nature of their navigation, guidance and control systems motivate an integrated approach to trajectory general ion and trajectory tracking for autonomous vehicles. In this paper, an experimental testbed was designed for studying this integrated trajectory control approach. In this paper we apply the separating approach to an autonomous nonlinear vehicle system. A new linear matrix inequality based H$_{\infty}$ control technique for periodic time-varying systems is applied to the role of trajectory tracking. Trajectory general ion is accomplished by exploit ing the differential flatness property of the vehicle system; this at lows product ion of desired feasible nominal or reference trajectories from certain ″flat'system outputs. Simulation and experimental results are presented showing stable tracking of a periodic circular trajectory.

  • PDF

Development of application for guidance and controller unit for low cost and small UAV missile based on smartphone (스마트폰을 활용한 소형 저가 유도탄 유도조종장치용 어플리케이션 개발)

  • Noh, Junghoon;Cho, Kyongkuk;Kim, Seongjun;Kim, Wonsop;Jeong, Jinseob;Sang, Jinwoo;Park, Chung-Woon;Gong, Minsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.610-617
    • /
    • 2017
  • In the recent weapon system trend, it is required to develop small and low cost guidance missile to track and strike the enemy target effectively. Controling the such small drone typed weapon demands a integrated electronic device that equipped with not only a wireless network interface, a high resolution camera, various sensors for target tracking, and position and attitude control but also a high performance processor that integrates and processes those sensor outputs in real-time. In this paper, we propose the android smartphone as a solution for that and implement the guidance and control application of the missile. Furthermore, the performance of the implemented guidance and control application is analyzed through the simulation.

Development of AUV's Waypoint Guidance Law and Verification by HILS (무인잠수정의 경로점 유도 법칙 설계 및 HILS 검증)

  • Hwang, Jong-Hyon;Yoo, Tae-Suk;Han, Yongsu;Kim, Hyun Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1417-1423
    • /
    • 2020
  • This paper proposes a waypoint guidance algorithm for the Autonomous Underwater Vehicle(AUV). The proposed simplified guidance algorithm is presented, which is combined LOS guidance and cross-track guidance for path following. Cross-track error is calculated using the position of the AUV and reference path. LOS guidance and cross-track guidance are appropriately changed according to cross-track error. And the stability of the system has been improved using variable cross-track control gain by cross-track error. Also, in this paper, navigation hardware in-the loop simulation(HILS) is implemented to verify navigation algorithm of AUV that performs combined navigation using inertial navigation device and doppler velocity log(DVL). Finally, we design integrated system HILS (including navigation HILS) for performance verification of guidance algorithm of the autonomous underwater vehicle. By comparing the sea test result with HILS result, the proposed guidance algorithm and HILS configuration were confirmed be correct.

A development of Intelligent Parking Control System Using Sensor-based on Arduino

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • In this paper, for efficient parking control, in an Arduino environment, an intelligent parking control prototype was implemented to provide parking control and parking guidance information using HC-SR2O4 and RC522. The main elements of intelligent parking control are vehicle recognition sensors, parking control facilities, and integrated operating software. Whether the vehicle is parked on the parking surface may be confirmed through sensor or intelligent camera image analysis. Parking control equipment products include parking guidance and parking available display devices, vehicle number recognition cameras, and intelligent parking assistance systems. This paper applies and implements ultrasonic sensors and RFID concepts based on Arduino, recognizes registered vehicles, and displays empty spaces. When a vehicle enters a parking space to handle this function, the automatic parking management system distinguishes the registered vehicle from the external vehicle through the RC522 sensor. In addition, after checking whether the parking slot is empty, the HC-SR204 sensor is displayed through the LED so that the driver can visually check it. RFID is designed to check the parking status of the server in real time and provide the driver with optimal route service to the parking slot.

Modelling of Fixed Wing UAV and Flight Control Computer Based Autopilot System Development for Integrated Simulation HILS Environment (고정익 UAV 모델링 및 비행조종컴퓨터 기반 오토파일럿 통합 시뮬레이션 HILS 환경 구축)

  • Kim, Lamsu;Lee, Dongwoo;Lee, Hohyeong;Hong, Suwoon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.857-866
    • /
    • 2022
  • Fixed-wing UAVs have long endurance and range capabilities compared to other aerial platforms. These advantages led fixed-wing UAVs to become a popular platform for reconnaissance missions in the military. In this research, we modeled fixed-wing UAVs, including the landing gear model and developed a guidance and control system for flight control computers to construct a HILS environment. We also developed an autopilot system that includes automated take-off, cruise, and landing control for UAVs. We also retrived the Aerodynamic coefficients an UAV using Datcom and AVL software and used them for 6 degrees of freedom modeling. The Flight control computer calculates guidance commands using the Carrot chasing guidance law after distinguishing the condition of the UAV based on 16 pre-defined flight modes and calculates control inputs using Nonlinear Dynamic Inversion (NDI) control scheme. We used RTNngine to integrate the Simulink model and flight control computer for HILS environment formulation.

Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle) (무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템)

  • Oh Sang Heon;Lee Sang Jeong;Park Chansik;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.

Development of Integrated System for Safety Assessment of Damaged Ship (손상선박의 안전성 평가를 위한 통합시스템 개발)

  • Lee, Soon-Sup;Lee, Dong-Kon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2008
  • The number of marine accidents have been decreased since various equipments for navigation control have been introduced to the marine vessels. However, disastrous marine accidents such as ship collisions are occurred more frequently. Therefore, IMO(International Maritime Organization) is enforcing the design requirement of structural strength for marine vessel. Also EU countries are developing new design methodologies and design tools to suggest the design guidance which can minimize the damage of commercial vessels in case of marine collision accidents. In this study, an integrated design system for the safety assessment has been presented to enhance the safety of damaged ships in marine collision accidents. The architecture of system is described by use-cases and IDEF functional analysis. Then an integrated system for safety assessment of damaged ship which is considering both damage stability and structural safety has been developed to support the ship design in early stage.

The Review on the Integrated Control System for HWIL Simulation (HWIL 시뮬레이션을 위한 통합 제어 시스템 고찰)

  • Kim, Ki-Seung;Kim, Young-Ju;Hong, Jeong-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2659-2661
    • /
    • 2002
  • The development of guided missile requires complex guidance schemes and hardware units because of high maneuver, delicate and variable missions. In this point of view, simulation systems and facilities which test missile hardwares and softwares are needed. This paper introduces the hardware-in-the loop simulation system and facilities which include the real-time computation systems and 3 Axis FMS(Flight Motion Simulator).

  • PDF

Attitude Determination GPS/INS Integrated Navigation System with FDI Algorithm for a UAV

  • Oh Sang Heon;Hwang Dong-Hwan;Park Chansik;Lee Sang Jeong;Kim Se Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1529-1543
    • /
    • 2005
  • Recently an unmanned aerial vehicle (UAV) has been widely used for military and civil applications. The role of a navigation system in the UAV is to provide navigation data to the flight control computer (FCC) for guidance and control. Since performance of the FCC is highly reliant on the navigation data, a fault in the navigation system may lead to a disastrous failure of the whole UAV. Therefore, the navigation system should possess a fault detection and isolation (FDI) algorithm. This paper proposes an attitude determination GPS/INS integrated navigation system with an FDI algorithm for a UAV. Hardware for the proposed navigation system has been developed. The developed hardware comprises a commercial inertial measurement unit (IMU) and the integrated navigation package (INP) which includes an attitude determination GPS (ADGPS) receiver and a navigation computer unit (NCU). The navigation algorithm was implemented in a real-time operating system with a multi-tasking structure. To evaluate performance of the proposed navigation system, a flight test has been performed using a small aircraft. The test results show that the proposed navigation system can give accurate navigation results even in a high dynamic environment.