• Title/Summary/Keyword: Integrated displacement

Search Result 180, Processing Time 0.026 seconds

Displacement Analysis of Structures using RTK-GPS/Accelerometer Integration Methods (RTK-GPS와 가속도계 통합계산을 통한 구조물의 변위 해석)

  • Hwang, Jin-Sang;Yun, Hong-Sic;Lee, Dong-Ha;Hong, Sung-Nam;Suh, Yong-Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.583-591
    • /
    • 2011
  • Accurate observation results of dynamic displacements are essential to the protection of civil structures. In this study, we evaluated the optimal methods of the RTK/GPS Accelerometer integration through comparison and analysis of several experiments results. Two methods will be used to calculate the dynamic displacements from the results of the acceleration data as well as two integration methods for measuring the dynamic, static, and quasi-static displacements by incorporating the displacement results from the RTK-GPS and Accelerometer. By using a Cantilever Beam and LVDT measurement, we were able to ensure that the different displacement comparisons would be reliable and accurate. As a results from experiments, the accelerometer processing method applied by use of accelerometers data was filtering with the double integral using FIR band-pass filter which is most optimal for assessing the dynamic displacements. Also, the integrated method using extracting substitution displacements is suitable for measuring synthetically the dynamic static and quasi-static displacements of civil structures with RTK-GPS and accelerometer.

Study of Integrated-Flight M&S Application for the Anti-Tank Missile Configuration Design (대전차 유도무기의 형상 설계에서의 통합비행 M&S 적용 연구)

  • Jeong, Dong Gil;Kim, Sangman;Lee, Gunha;Hwang, Cheol Gyu
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.1
    • /
    • pp.13-19
    • /
    • 2017
  • 6-DOF flight simulation program is most generally used M&S tool in domestic missile development procedure. The 6-DOF M&S method, however, cannot validate the performance of a imaging seeker-adopted missile in various conditions. A M&S tool for the analysis of the integrated-flight simulation is required since the tracking performance of the imaging seeker is highly dependent on the missile maneuvering, which introduces the displacement and rotation of the target in the seeker imagery. Through the development of the $3^{rd}$ generation anti-tank missile, Raybolt, the integrated-flight M&S tool was developed and applied to the missile configuration design. It integrates synthetic image generation S/W, imaging tracker, and flight simulation program and computes the main system performance criteria, hit probability by Monte-Carlo Simulation. In this paper, the issues in the $3^{rd}$ generation anti-tank missile configuration and the integrated-flight M&S method and results are described.

EVALUATION OF SEISMIC SHEAR CAPACITY OF PRESTRESSED CONCRETE CONTAINMENT VESSELS WITH FIBER REINFORCEMENT

  • CHOUN, YOUNG-SUN;PARK, JUNHEE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.756-765
    • /
    • 2015
  • Background: Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. Methods: The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. Results: The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ~40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. Conclusion: The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

Integrated Position Estimation Using the Aerial Image Sequence (항공영상을 이용한 통합된 위치 추정)

  • Sim, Dong-Gyu;Park, Rae-Hong;Kim, Rin-Chul;Lee, Sang-Uk
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.76-84
    • /
    • 1999
  • This paper presents an integrated method for aircraft position estimation using sequential aerial images. The proposed integrated system for position estimation is composed of two parts: relative position estimation and absolute position estimation. Relative position estimation recursively computes the current position of an aircraft by accumulating relative displacement estimates extracted from two successive aerial images. Simple accumulation of parameter values decreases reliability of the extracted parameter estimates as an aircraft goes on navigating, resulting in large position error. Therefore absolute position estimation is required to compensate for the position error generated in relative position estimation. Absolute position estimation algorithms by image matching or digital elevation model (DEM) matching are presented. In image matching, a robust oriented Hausdorff measure (ROHM) is employed whereas in DEM matching an algorithm using multiple image pairs is used. Computer simulation with four real aerial image sequences shows the effectiveness of the proposed integrated position estimation algorithm.

  • PDF

Development of models for measuring track irregularities using accelerometers (가속도계를 이용한 궤도틀림 측정용 모델의 개발)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Kim, Seog-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.303-310
    • /
    • 2011
  • This paper is focused on development of models for measuring lateral and vertical track irregularities from corresponding accelerometers of an in-service high-speed train. Generally, the track irregularity was measured by a special railway inspection vehicle or system with contact or non-contact sensors. However, the sensors are very expensive and vulnerable to a harsh environment. Displacement estimation from an inertial measurement unit and its wave-band filtering was already developed in the previous study, and it was found that their results included not only the track irregularities but also other information such as phase delay of the applied filters, and suspension and conicity of the wheel. To identify the track irregularities from those results, a compensation filtering method was proposed. Each directional compensation filter was derived by using a system identification method with the estimated directional displacement as input and the corresponding track irregularities as output. In this paper, they are integrated into a model for each direction and applied to the measured lateral and vertical acceleration data from the axle-box and bogie of an in-service high-speed train. Their results are compared with the data from the track geometry measurement system. From the comparison, the proposed models are a useful tool for the measurement of the track irregularities using accelerometers of in-service high-speed trains.

  • PDF

A Study on a Foxtail Electrostatic Microactuator with a High Resolution (고해상도의 Foxtail형 정전력 마이크로구동기에 대한 연구)

  • Kim Man-Geun;Kim Young-Yun;Jo Kyoung-Woo;Lee Jong-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1198-1201
    • /
    • 2005
  • A new foxtail actuator driven by V-shape beam deflection using electrostatic force has been designed, fabricated and characterized for nano-resolution manipulators. The proposed foxtail mechanism was implemented using a pair of electrostatic actuators and a pair of holding actuators, which was analyzed based on the electromechanically coupled motion of voltage - displacement relation. The proposed actuator was fabricated onto Silicon-on-Insulator (SOI) wafer and its stepping characteristics were measured by micro optical interferometer consisting of integrated micromirror and optical fiber. The fabricated foxtail microactuator was successfully operated from 1nm to 76nm, and the magnitude of step displacement was controllable up from 26nm/cycles to 53nm/cycle by changing the voltage.

  • PDF

Wave shape analysis of seismic records at borehole of TTRH02 and IWTH25 (KiK-net)

  • Kamagata, Shuichi
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.297-312
    • /
    • 2020
  • The KiK-net by NIED is a vertical array measurement system. In the database of KiK-net, singular pulse waves were observed in the seismic record at the borehole of TTRH02 during the mainshock (the magnitude of Japan Meteorological Agency (MJ) 7.3, MW 6.8) and aftershock (Mj 4.2) of Tottori-ken Seibu earthquake in 2000. Singular pulse waves were also detected in the seismic records at the borehole of IWTH25 during the Iwate-Miyagi Nairiku earthquake in 2008 (MJ 7.2, MW 6.9). These pulse waves are investigated by using the wave shape analysis methods, e.g., the non-stationary Fourier spectra and the double integrated displacement profiles. Two types of vibration modes are discriminated as the occurrence mechanism of the singular pulse waves. One corresponds to the reversal points in the displacement profile with the amplitude from 10-4 m to 10-1 m, which is mainly related to the fault activity and the amplification pass including the mechanical amplification (collision) of the seismograph in the casing pipe. The other is the cyclic pulse waves in the interval of reversal points, which is estimated as the backlash of the seismograph itself with the amplitude from 10-5 m to 10-4 m.

A Study on the Real Time Monitoring of Long Span Bridge Behavior Using GPS (GPS를 이용한 장대교량 실시간 거동 모니터링에 관한 연구)

  • Choi, Byoung-Gil;Sohn, Duk-Jae;Na, Young-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.377-383
    • /
    • 2010
  • This study aims to develop the system which is able to monitor long span bridge behavior in real time using GPS. Through measuring displacement of long span bridge by GPS in real time, over all 3D behavior of bridge could be analyzed and managed. Monitoring system of long span bridge which is developed in this study is able to manage in real time the safety of bridge by transmitting horizontal and vertical displacement of bridge, and danger signals to an integrated operations center. Also it is able to monitor the absolute behavior of long span bridge by GPS, and to construct a national bridge safety management networks.

A three-dimensional finite element analysis of the relationship between masticatory performance and skeletal malocclusion

  • Park, Jung-Chul;Shin, Hyun-Seung;Cha, Jung-Yul;Park, Jong-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.1
    • /
    • pp.8-13
    • /
    • 2015
  • Purpose: The aim of this study was to evaluate the transfer of different occlusal forces in various skeletal malocclusions using finite element analysis (FEA). Methods: Three representative human cone-beam computed tomography (CBCT) images of three skeletal malocclusions were obtained from the Department of Orthodontics, Yonsei University Dental Hospital, Seoul, South Korea. The CBCT scans were read into the visualization software after separating bones and muscles by uploading the CBCT images into Mimics (Materialise). Two separate three-dimensional (3D) files were exported to visualize the solid morphology of skeletal outlines without considering the inner structures. Individual dental impressions were taken and stone models were scanned with a 3D scanner. These images were integrated and occlusal motions were simulated. Displacement and Von Mises stress were measured at the nodes of the FEA models. The displacement and stress distribution were analyzed. FEA was performed to obtain the 3D deformation of the mandibles under loads of 100, 150, 200, and 225 kg. Results: The distortion in all three skeletal malocclusions was comparable. Greater forces resulted in observing more distortion in FEA. Conclusions: Further studies are warranted to fully evaluate the impact of skeletal malocclusion on masticatory performance using information on muscle attachment and 3D temporomandibular joint movements.

Speeding up the KLT Tracker for Real-time Image Georeferencing using GPS/INS Data

  • Tanathong, Supannee;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.629-644
    • /
    • 2010
  • A real-time image georeferencing system requires all inputs to be determined in real-time. The intrinsic camera parameters can be identified in advance from a camera calibration process while other control information can be derived instantaneously from real-time GPS/INS data. The bottleneck process is tie point acquisition since manual operations will be definitely obstacles for real-time system while the existing extraction methods are not fast enough. In this paper, we present a fast-and-automated image matching technique based on the KLT tracker to obtain a set of tie-points in real-time. The proposed work accelerates the KLT tracker by supplying the initial guessed tie-points computed using the GPS/INS data. Originally, the KLT only works effectively when the displacement between tie-points is small. To drive an automated solution, this paper suggests an appropriate number of depth levels for multi-resolution tracking under large displacement using the knowledge of uncertainties the GPS/INS data measurements. The experimental results show that our suggested depth levels is promising and the proposed work can obtain tie-points faster than the ordinary KLT by 13% with no less accuracy. This promising result suggests that our proposed algorithm can be effectively integrated into the real-time image georeferencing for further developing a real-time surveillance application.