• Title/Summary/Keyword: Integrated assembly

Search Result 266, Processing Time 0.034 seconds

Mono and Multilayer Assembly of Zeolite Microcrystals on Substrates

  • Yoon, Kyung-Byung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.17-26
    • /
    • 2006
  • We have shown that zeolite microcrystals can be readily organized in the form of uniformly oriented monoand multilayers on various substrates by well-defined chemical linkages based on covalent, ionic, and hydrogen bondings between the microcrystals and the substrates. This finding establishes the fact that micrometer-scale building blocks can be readily organized into organized entities through interconnection of the surface-tethered large number of functional groups. Since zeolite crystals have highly regular and uniform nanochannels and nanopores within them, the resulting mono and multilayers of zeolite microcrystals bear great potential to be utilized in various novel applications.

Methodology of Tolerance Analysis of Deformable Assembly (변형을 고려한 공차분석 방법론)

  • Lee, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.20-26
    • /
    • 2007
  • The new integrated CAD-CAM systems induce an increasing demand for simulation tools, which are able to simulate industrial part assembly processes by welding, gluing, riveting or bolting(more generally by fastening). Concerning fastened flexible parts, there exist no efficient computational aid on tolerance and methodology available on the field. The first part briefly presents the approach method based on the finite element method for TADA(Tolerance Analysis of Deformable Assemblies). The second part compares the results obtained by simulation using the commercial FEM code with the measurements. The principal elements of dispersion have been identified and studied on an experimental basis in order to test the robustness of the TADA model. This has enabled us to verify the model's possibilities as regards industrial constraints such as the use of incompatible meshes or the use of triangular elements and so on.

CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform

  • Perin, Yann;Velkov, Kiril
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1339-1345
    • /
    • 2017
  • In the framework of the EU funded project NURESAFE, the subchannel code CTF and the neutronics code DYN3D were integrated and coupled on the NURESIM platform. The developments achieved during this 3-year project include assembly-level and pin-by-pin multiphysics thermal hydraulics/neutron kinetics coupling. In order to test this coupling, a PWR rod ejection transient was simulated on a MOX/UOX minicore. The transient is simulated using two different models of the minicore. In the first simulation, both codes model the core with an assembly-wise resolution. In the second simulation, a pin-by-pin fuel-centered model is used in CTF for the central assembly, and a pin power reconstruction method is applied in DYN3D. The analysis shows the influence of the different models on global parameters, such as the power and the average fuel temperature, but also on local parameters such as the maximum fuel temperature.

Effects of ITO surface modification using self-assembly molecules on the characteristics of OLEDs

  • Oh, Se-Young;Kim, Dong-Hwi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.632-635
    • /
    • 2007
  • We have synthesized 4'-nitrobiphenyl-4-carboxylic acid (NBCA) and fabricated the hole-only device consisting of ITO/NBCA SAM/TPD (1500 ${\AA}$)/Al (500 ${\AA}$) and the organic light emitting diodes (OLEDs) consisting of ITO/NBCA SAM/TPD (600 ${\AA}$)/Alq3 (600 ${\AA}$)/Al (600 ${\AA}$). The prepared hole-only device with NBCA exhibited lower driving voltage than the device with 4-nitrobenzoic acid (NBA). OLEDs using NBCA also show high external quantum efficiency.

  • PDF

Real-time line control system for automated robotic assembly line for multi-PCB models

  • Park, Jong-Oh;Hyun, Kwang-Ik;Um, Doo-Gan;Kim, Byoung-Doo;Cho, Sung-Jong;Park, In-Gyu;Kim, Young-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1915-1919
    • /
    • 1991
  • The efficiency of automated assembly line is increased by realizing the automation of each assembly cell, monitoring the line information and developing the real-time line control system it. which production flow is controllable. In this paper, the several modules which are important factors when constructing automated real-time control system, such as, line control S/W module, real-time model change module, error handling module and line production management S/W module, are developed. For developing these important programming modules, real-time control and multi-tasking techniques are integrated. In this paper, operating method of real-time line control in PCB automated assembly line is proposed and for effective control of production line by using multi-tasking technique, proper operating method for relating real-time line control with multi-tasking is proposed by defining the levels of signals and tasks. CIM-Oriented modular programming method considering expandability and flexibility will be added for further research in the future.

  • PDF

A Scheduling System based on DBMS for Shipbuilding (DATABASE 기반의 조선업 일정계획 시스템 구축)

  • Lee, Dong-Uk;Kim, Shun-Kyum;Lee, Ho-Yoon;Park, Sung-Kyu;Lee, Dae-Hyeong;Wang, Gi-Nam
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.26-34
    • /
    • 2012
  • Assembly scheduling in shipbuilding is responsible for determine assembly process orders and departmental production schedule for the block, the basic composite unit of ships. It is necessary much more information to decide production scheduling as the characteristic of shipbuilding which has been more complex and more various and also, a lot of waste of time and of human power is generated in the course of data processing. The target shipbuilding manufacturer of this study use empirical techniques, based on the user's discretion, to compile and to apply data which are scattered in DB storages separately. Because of that reason, the user should not only be performed identification and screening operations but also modification and verification for vast amounts of data, so it is hard to keep the consistency of the data and also the operation time is not constant. Accordingly, the object in this study is by presenting an efficient DB framework to reduce wasting time and man-hour at experienced-oriented process, abate user's manual operations and support an efficient scheduling in assembly processes.

CONSTRUCTION, ASSEMBLY AND COMMISSIONING OF KSTAR MAIN STRUCTURES

  • Yang, Hyung-Lyeol;Bak, Joo-Shik;Kim, Byung-Chul;Choi, Chang-Ho;Kim, Woong-Chae;Her, Nam-Il;Hong, Kwon-Hee;Kim, Geung-Hong;Kim, Hak-Kun;Sa, Jeong-Woo;Kim, Hong-Tack;Kim, Kyung-Min;Kim, Sang-Tae
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.439-450
    • /
    • 2008
  • The KSTAR device succeeded in first plasma generation on $13^{th}$ June of 2008 through comprehensive system test and commissioning. Among various kinds of the key factors that decisively affected the project, success in the construction and assembly of the major tokamak structure was most important one. Every engineering aspects of each structure were finally confirmed in the integrated commissioning period, and there were no severe troubles and failures prevented the KSTAR device from operating during the commissioning and the first plasma experiments. As a result, all of the experiences and technologies achieved through the KSTAR construction process are expected to be important fundamentals for future construction projects of superconducting fusion devices. This paper summarizes key engineering features of the major structures and of the machine assembly.

Design of Integrated Process-Based Model for Large Assembly Blocks Considering Resource Constraints in Shipbuilding (자원제약을 고려한 조선 대조립 공정의 통합 프로세스 기반 모델 설계)

  • Jeong, Eunsun;Jeong, Dongsu;Seo, Yoonho
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.107-117
    • /
    • 2019
  • Because shipbuilding is single-product production with limited resources, production management technology is essential to manage the resources effectively and maximize the productivity of ship-process. Therefore, many shipbuilding companies are conducting research on ship production plan and process considering various constraints in the field by applying modeling and simulation. However, it is difficult to provide accurate production plan on sudden schedule and process changes, and to understand the interconnectivity between the processes that produce blocks in existing research. In addition, there are many differences between the production planning and field planning because detailed processes and quantity of blocks can not be considered. In this research, we propose the integrated process-based modeling method considering process-operation sequences, BOM(Bill of materials) and resource constraints of all the scheduled blocks in the indoor system. Through the integrated process-based model, it is easy for the user to grasp the assembly relationship, workspace and preliminary relationship of assembly process between the blocks in indoor system. Also, it is possible to obtain the overall production plan that maximizes resource efficiency without the separate simulation and resource modeling procedures because resource balancing that considers the amount of resource quantity shared in the indoor system is carried out.