• Title/Summary/Keyword: Integrated System Design

Search Result 3,011, Processing Time 0.036 seconds

Integrated Safety, Quality, and Environment Information System Based on Web Environment (웹 기반 하에서의 안전, 품질, 환경 통합 정보 시스템)

  • 박재현;김형준;나승훈;서지한;김귀남
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.05a
    • /
    • pp.27-32
    • /
    • 2000
  • This study presents the design of integrated safety, quality, and environmental information system based on the internet environment. Quality management system, environmental management system, and safety management system are adapted in many manufacturing and service organization respectively but those system does not work effectively. Especially safety management system and environmental management system are very similar with format and contents. Therefore, Those system must be integrated to increase effiency.

  • PDF

Application of Lightself to Buildings as a Integrated Daylighting System (건축물 일체형으로서 광선반형 자연채광시스템의 건축물 적용기법에 관한 연구)

  • Kim, Jeong-Tai;Chung, Yu-Gun
    • KIEAE Journal
    • /
    • v.2 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • For sustainable building design, using day lighting is considered a variable technique to save energy and create comfort indoor environments. Specially, the lightself as a integrated daylighting system is one of the most important techniques due to it's durability, availability and lighting performance. This paper aims to analyze the development and architectural application of a lightself system to buildings as a integrated day lighting system. For the study, advanced lightself systems developed in abroad such as "Integrated Enveloped and Lighting System", "Anidolic Daylighting System" and etc. are analyzed. Also, the architectural examples are investigated. As results, the new technologies such as optically treated reflective and sun-tracking are adopted to improve daylight performance. And, lots of environmentally friendly buildings are installed on integrated lightself system.

Conceptual Design of the KAFASAT Using System Engineering Tools (시스템공학 도구를 이용한 KAFASAT 개념설계)

  • Lee, Kihun;Kim, Jongbum;Jung, Myungjin;Ohm, Yunjong;Cho, Donghyurn;Kwon, Kybeom
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • KAFASAT is a CubeSat which has a high level mission of testing the possibility of establishing the LEO satellite constellation providing the role of communication nodes and quasi-realtime image recognition of battlefield in accordance with the aspect of future-war-environment. The high level mission is developed using the Pugh selection method, which is one of system engineering tools. In order to accomplish the high level mission objectives and deduce engineering level requirements, system engineering tools such as Analytic Hierarchy Process and Quality Function Deployment are used. The subsystem synthesis in the context of system engineering process is done using a developed integrated design environment. The paper also includes the conceptual design results of the KAFASAT, which can be used as a baseline for upcoming preliminary design.

Development of Agent Module of Integrated Design System for Centrifugal Pump Design Optimization (원심펌프 최적설계를 위한 통할설계 시스템의 Agent 모듈 개발)

  • Choi, Bum-Seog;Kim, Myung-Bae;Lee, Kong-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.491-496
    • /
    • 2005
  • A pump design system was constructed by several integrating in-house programs and commercial softwares to design and evaluate centrifugal pumps. An agent-based prototype framework has been developed for collaborative design and optimization of a centrifugal pump. This paper introduces the feasible technology needed to construct a pump design system based on software agents. The integrated design system, developed in the present study, was used in designing a centrifugal pump and modifying its impeller shape by using optimization processes to increase the pump performance.

  • PDF

Integrated CAD System for Ship and Offshore Projects

  • Suh, Heung-Won;Lee, Sung-Geun
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.41-48
    • /
    • 2006
  • Nowadays major shipbuilding companies are trying to expand their business not only to shipbuilding but to offshore projects as well. DSME is one of them. DSME is trying to set up a flexible design and construction environment for shipbuilding and offshore construction in a single shipyard. The shipbuilding and offshore projects, however, have their unique technology but they need to be designed and constructed in one site. To support this new requirement, DSME has developed an integrated CAD system for ship and offshore projects. In this integrated design environment, the designers can design commercial ships and offshore projects in a flexible manner. Concurrent design is very important for ship and offshore design. As compared to the complexity of the product, the design period is quite short. In effect, the design system for the ship and offshore project has to support concurrent design. One essential point of concurrent design environment is a product model based design system. DSME has developed and implemented the 3D product model concurrent design environment based on Tribon M3. Tribon is a widely used CAD system in shipbuilding area that is developed by Tribon Solutions. DSME has both customized the Tribon system and developed in-house application systems to support its own design and production procedures. All the design objects are modeled in one common database to support concurrent design and accurate production. The major in-house development focused on the modeling automation and automatic drawing generation. During the drawing generation process many of the additional production information are also extracted from the 3D product model. In addition, several applications and functionalities have been developed to apply the shipbuilding based Tribon M3 system to offshore projects. The development of shape nesting, tubular connection, isometric drawing, grating nesting systems are the typical.

Development of Integrated Design System for Space Frame Structures (스페이스프레임 구조물의 통합설계시스템 개발)

  • Lee, Ju-Young;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.59-66
    • /
    • 2001
  • This paper describes three modules for development of the Space Frame Integrated Design System(SFIDS). The Control Module is implemented to control the developed system. The Model Generation Module based on PATRAN user interface enables users to generate a complicated finite element model for space frame structures. The Optimum Design Module base on a branch of combinatorial optimization techniques which can realize the optimization of a structure having a large number of members designs optimum members of a space frame after evaluating analysis results. The Control Module and the Model Generation Module Is implemented by PATRAN Command Language(PCL) while C++ language is used in the Optimum Design Module. The core of the system is PATRAN database, in which the Model Generation Module creates information of a finite element model. Then, PATRAN creates Input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

An Analysis Study for Thermal Design of ISG (Integrated Starter & Generator) for Hybrid Electric Vehicle (하이브리드 차량용 ISG(Integrated Starter Generator)의 방열 설계를 위한 해석적 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.120-127
    • /
    • 2013
  • Hybrid electric vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. Electrification of automobiles is indispensable for entering into global market because of enhanced environment restriction. ISG (Integrated Starter & Generator) system is one of main electric parts and can improve fuel efficiency more than other components by using Idle Stop & Go function and regenerative braking system. However, if ISG motor and inverter work under the continuously high load condition, it will make them the decrease of performance and durability. So the ISG motor and inverter need to properly design the cooling system of them. In this study, we suggested the enhancement points by modifying the thermal design of ISG motor and then confirmed the improvement of the cooling performance.

Integrated Expansion Analysis of Pipe-In-Pipe Systems

  • Choi, Han-Suk;Do Chang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.9-14
    • /
    • 2006
  • This paper presents an analytical method, application of expansion, mechanical design, and integrated expansion design of subsea insulated pipe-in-pipe (PIP) systems. PIP system consists of a flowline and a casing pipe for the transport of high temperature and high pressure product from the subsea wells. To prevent heat lass from the fiowline, insulation material is applied between the pipes. The fiawline pipe and the casing pipe have mechanical connections through steel ring plate (water stops) and bulkheads. Pipeline expansion is defined by temperature, internal pressure, soil resistance, and interaction force between the flowline and the casing pipe. The results of the expansion analysis, the mechanical design of connection system of the two pipes and tie-in spool design are integrated for the whole PIP system.

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Chengkun, Lv;Juntao, Chang;Lei, Dai
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

An Integrated Approach to the Analysis and Design of a Three-Axis Cross-Coupling Control System

  • Jee, Sung-Chul;Lee, Hak-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2007
  • We propose a controller design analysis for a cross-coupling control system, which is essential for achieving high contouring accuracy in multi-axis CNC systems. The proposed analysis combines three axial controllers for each individual feed drive system together with a cross-coupling controller at the beginning of the design stage in an integrated manner. These two types of controllers used to be separately designed and analyzed since they have different control objectives. The proposed scheme is based on a mathematical formulation of a three-dimensional contour error model and includes a stability analysis for the overall control system and a performance analysis in terms of contouring and tracking accuracy at steady state. A computer simulation was used to demonstrate the validity of the proposed methodology. The performance variation was investigated under different operating conditions and controller gains, and a design range was elicited that met the given performance specifications. The results provide basic guidelines in systematic and comprehensive controller designs for multi-axis CNC systems. A cross-coupling control system was also implemented on a PC-based three-axis CNC testbed, and the experimental results confirmed the usefulness of the proposed control system in terms of contouring accuracy.