• Title/Summary/Keyword: Integrated Steam Generator

Search Result 43, Processing Time 0.019 seconds

Analysis on the Performance and the Emission of the Integrated Gasification Combined Cycle Using Heavy Oil (중잔사유 가스화 복합발전 사이클의 성능 및 환경배출 해석)

  • Lee, Chan;Yun, Yong-Seong
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.188-194
    • /
    • 2001
  • The process simulations are made on the IGCC power plant using heavy residue oil from refinery process. In order to model combined power block of IGCC, the present study employs the gas turbine of MS7001FA model integrated with ASU (Air Separation Unit), and considers the air extraction from gas turbine and the combustor dilution by returned nitrogen from ASU. The exhaust gas energy of gas turbine is recovered through the bottoming cycle with triple pressure HRSG (Heat Recovery Steam Generator). Clean syngas fuel of the gas turbine is assumed to be produced through Shell gasification of Visbreaker residue oil and Sulfinol-SCOT-Claus gas cleanup processes. The process optimization results show that the best efficiency of IGCC plant is achieved at 20% air extraction condition in the case without nitrogen dilution of gas turbine combustor find at the 40% with nitrogen dilution. Nitrogen dilution of combustor has very favorable and remarkable effect in reducing NOx emission level, while shifting the operation point of gas turbine to near surge point.

  • PDF

The development of fuel processor for compact fuel cell cogeneration system (소형 열병합 연료전지 연계형 연료처리시스템 개발)

  • Cha, Jung-Eun;Jun, Hee-Kwon;Park, Jung-Joo;Ko, Youn-Taek;Hwang, Jung-Tae;Chang, Won-Chol;Kim, Jin-Young;Kim, Tae-Won;Kim, In-Ki;Jeong, Young-Sik;Kal, Han-Joo;Yung, Wang-Rai;Jung, Woon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.323-327
    • /
    • 2009
  • To extract hydrogen for stack, fuels such as LPG and LNG were reformed in the fuel processor, which is comprised of desulfurizer, reformer, shift converter, CO remover and steam generator. All elements of fuel processor are integrated in a single package. Highly active catalysts (desulfurizing adsorbent, reforming catalyst, CO shift catalyst, CO removal catalyst) and the various burners were developed and evaluated in this study. The performance of the developed catalysts and the commercial ones was similar. 1 kW, 5 kW class fuel processor systems using the developed catalyst and burner showed efficiency of 75 %(LHV, for LNG). The start-up time of the 1 kW class fuel processor was less than 50 minutes and its volume including insulation was about 30 l. The start-up time of 3 kW and 5 kW class fuel processors with the volume of 90 l and 150 l, respectively, was about 60 minutes. In the case of LPG fuel, efficiency, volume and start-up time of 1kW class fuel processor showed 73 %(LHV), < 60 l and < 60 min, respectively. Advanced fuel processor showed more highly efficiency and shorter start-up time due to the improvement of heat exchanger and operating method. 1 kW and 3 kW class fuel processors have been evaluated for reliability and durability including with on/off test of developed catalysts and burner.

  • PDF

APPLICATIONS OF INTEGRATED SAFETY ANALYSIS METHODOLOGY TO RELOAD SAFETY EVALUATION

  • Jang, Chan-Su;Um, Kil-Sup
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.187-194
    • /
    • 2011
  • Korea Nuclear Fuel is developing the X-GEN fuel which shows high performance and robust reliability for the worldwide supply. However, the simplified code systems such as CESEC-III which were developed in 1970s are still used in the current Non-LOCA safety analysis of OPR1000 and APR1400 plants. Therefore, it is essential to secure an advanced safety analysis methodology to make the best use of the merits of X-GEN fuel. To accomplish this purpose, the $\b{i}$ntegrated $\b{s}$afety $\b{a}$nalysis $\b{m}$ethodology (iSAM), is developed by selecting the best-estimate thermal-hydraulic code RETRAN. iSAM possesses remarkable advantages, such as generality, integrity, and designer-friendly features. That is, iSAM can be applied to both OPR1000 and APR1400 plants and uses only one computer code, RETRAN, in the whole scope of the non-LOCA safety analyses. Also the iSAM adopts the unique and automatic initialization and run tool, $\b{a}$utomatic $\b{s}$teady-$\b{s}$tate $\b{i}$nitialization and $\b{s}$afety analysis too l (ASSIST), to enable unhandy designers to use the new design code RETRAN without difficulty. In this paper, a brief overview of the iSAM is given, and the results of applying the iSAM to typical non-LOCA transients being checked during the reload design are reported. The typical non-LOCA transients selected are the single control element assembly withdrawal (SCEAW) accident, the asymmetric steam generator transients (ASGT), the locked rotor (LR) accident, and bank CEA withdrawal (BCEAW) event. Comparison to current licensing results shows a close resemblance; thus, it reveals that the iSAM can be applied to the non-LOCA safety analysis of OPR1000 and APR1400 plants.