• Title/Summary/Keyword: Integrated Simulation System

Search Result 1,231, Processing Time 0.029 seconds

A Study on the Prediction Method of Information Exchange Requirement in the Tactical Network (전술네트워크의 정보교환요구량 예측 방법에 관한 연구)

  • Pokki Park;Sangjun Park;Sunghwan Cho;Junseob Kim;Yongchul Kim
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.95-105
    • /
    • 2022
  • The Army, Navy, and Air Force are making various efforts to develop a weapon system that incorporates the 4th industrial revolution technology so that it can be used in multi-domain operations. In order to effectively demonstrate the integrated combat power through the weapon system to which the new technology is applied, it is necessary to establish a network environment in which each weapon system can transmit and receive information smoothly. For this, it is essential to analyze the Information Exchange Requirement(IER) of each weapon system, but many IER analysis studies did not sufficiently reflect the various considerations of the actual tactical network. Therefore, this study closely analyzes the research methods and results of the existing information exchange requirements analysis studies. In IER analysis, the size of the message itself, the size of the network protocol header, the transmission/reception structure of the tactical network, the information distribution process, and the message occurrence frequency. In order to be able to use it for future IER prediction, we present a technique for calculating the information exchange requirement as a probability distribution using the Poisson distribution and the probability generating function. In order to prove the validity of this technique, the results of the probability distribution calculation using the message list and network topology samples are compared with the simulation results using Network Simulator 2.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Modification of WASP5 for Ungauged Watershed Management and Its Application (미계측 유역관리를 위한 WASP5 모형의 개선 및 적용성 검토)

  • Kim, Jin-Ho;Shin, Dong-Suk;Kwun, Soon-Kuk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • This study was carried out to develop a water quality simulation model for the evaluation of an ungauged watershed. For this purpose, the WASP5 model was selected and modified. The model consists of three sub-models, LOAD-M, DYN-M, and EUT-M. LOAD-M, an empirical model, estimates runoff loadings using point and non-point source data of villages. The Geum River Estuary watershed was selected to calibrate and verify the Modified-WASP5. The LOAD-M model was established using field data of water quality and quantity at the gauging stations of the watershed and was applied to the ungauged watersheds, taking the watershed properties into consideration. The result of water quality simulation using Modified-WASP5 shows that the observed average BOD data from Gongju and Ganggyeong were 2.6 mg/L and 2.8 mg/L, and the simulated data were 2.5 mg/L and 2.4 mg/L, respectively. Generally, simulation results were in good agreement with the observed data. This study focused on formulating an integrated model for evaluating ungauged watersheds. Even though simulation results varied slightly due to limited availability of data, the model developed in this study would be a useful tool for the assessment and management of ungauged watersheds.

Climate Change by Global Warming and Its Effects on Production Efficiency of Lactating Dairy Cows in Korea : a Simulation Modeling Approach (지구온난화에 따른 국내 기후변화와 젖소 착유우의 생산효율에 미치는 영향 평가 : 모델 시뮬레이션을 이용한 접근)

  • Lee, Jung-Jin;Lee, Jun-Sung;Kim, Jong-Nam;Seo, Ja-Keum;Jo, Nam-Chul;Park, Seong-Min;Ki, Kwang-Seok;Seo, Seong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.4
    • /
    • pp.711-723
    • /
    • 2013
  • The objectives of this study were to access climate change by global warming in Korea, and to investigate its effects on production efficiency of lactating dairy cows. Two regions, Daegu and Daekwanryung, were selected to represent a warm and a cold area, respectively. Time-series analyses on meteorological records for 25 years (from January 1, 1988 to December 31, 2012) revealed significant and different climate changes in two regions. In the warm area there has been a significant (P<0.05) increase in low temperature during the summer, which can cause heat stress to the animal. On the other hand, a decrease in low temperature during the winter was observed in the cold region (P<0.01), and cold stress in winter can thus be an issue in this region. Simulations using a model integrated the Korean feeding standard for dairy cattle and the environmental effect module of Cornell Net Carbohydrate and Protein System, indicated that a reduction in feed efficiency can be a problem during the winter in the cold region while during the summer in the warm area. We conclude that the effect of climate change by global warming varies in different areas in Korea and a region-specific management strategy should be developed in order to maintain productivity, health and welfare of lactating dairy cows.

Numerical Modeling of Water Transfer among Precipitation, Surface Water, Soil Moisture and Groundwater

  • Chen, Xi;Zhang, Zhicai;Chen, Yongqin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.2-11
    • /
    • 2006
  • In the processes of hydrological cycle, when precipitation reaches the ground surface, water may become surface runoff or infiltrate into soil and then possibly further percolate into groundwater aquifer. A part of the water is returned to the atmosphere through evaporation and transpiration. Soil moisture dynamics driven climate fluctuations plays a key role in the simulation of water transfer among ground surface, unsaturated zone and aquifer. In this study, a one-layer canopy and a four-layer soil representation is used for a coupled soil-vegetation modeling scheme. A non-zero hydraulic diffusivity between the deepest soil layer modeled and groundwater table is used to couple the numerical equations of soil moisture and groundwater dynamics. Simulation of runoff generation is based on the mechanism of both infiltration excess overland flow and saturation overland flow nested in a numerical model of soil moisture dynamics. Thus, a comprehensive hydrological model integrating canopy, soil zone and aquifer has been developed to evaluate water resources in the plain region of Huaihe River basin in East China and simulate water transfer among precipitation, surface water, soil moisture and groundwater. The newly developed model is capable of calculating hydrological components of surface runoff, evapotranpiration from soil and aquifer, and groundwater recharge from precipitation and discharge into rivers. Regional parameterization is made by using two approaches. One is to determine most parameters representing specific physical values on the basis of characterization of soil properties in unsaturated zone and aquifer, and vegetations. The other is to calibrate the remaining few parameters on the basis of comparison between measured and simulated streamflow and groundwater tables. The integrated modeling system was successfully used in the Linhuanji catchment of Huaihe plain region. Study results demonstrate that (1) on the average 14.2% of precipitation becomes surface runoff and baseflow during a ten-year period from 1986 to 1995 and this figure fluctuates between only 3.0% in drought years of 1986, 1988, 1993 and 1994 to 24.0% in wet year of 1991; (2) groundwater directly deriving from precipitation recharge is about 15.0% t of the precipitation amount, and (3) about half of the groundwater recharge flows into rivers and loses through evaporation.

  • PDF

A High-resolution Numerical Simulation and Evaluation of Oak Pollen Dispersion Using the CMAQ-pollen Model (CMAQ-pollen 모델을 이용한 참나무 꽃가루 확산 고해상도 수치모의 및 검증)

  • Oh, Inbo;Kim, Kyu Rang;Bang, Jin-Hee;Lim, Yun-Kyu;Cho, Changbum;Oh, Jae-Won;Kim, Yangho;Hwang, Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.31-44
    • /
    • 2017
  • The aim of this study is to evaluate the accuracy and variability of the oak pollen concentrations over the Seoul metropolitan region (SMR) simulated by the Community Multiscale Air Quality (CMAQ)-based pollen dispersion model, which is the CMAQ-pollen model integrated with the improved oak pollen emission model(PEM-oak). The PEM-oak model developed is based on hourly emission flux parameterization that includes the effects of plant-specific release, meteorological adjustment, and diurnal variations of oak pollen concentrations. A 33 day-run for oak pollen simulation was conducted by the CMAQ-pollen model with a 3 km spatial resolution for the SMR during the 2014 spring pollen season. Modeled concentrations were evaluated against the hourly measurements at three Burkard sampling sites. Temporal variations of oak concentrations were largely well represented by the model, but the quantitative difference between simulations and measurements was found to be significant in some periods. The model results also showed that large variations in oak pollen concentrations existed in time and space and high concentrations in the SMR were closely associated with the regional transport under strong wind condition. This study showed the effective application of the CMAQ-pollen modeling system to simulate oak pollen concentration in the SMR. Our results could be helpful in providing information on allergenic pollen exposure. Further efforts are needed to further understand the oak pollen release characteristics such as interannual variation of the oak pollen productivity and its spatio-temporal flowering timing.

Development of Firefighting Performance Test Drills while Wearing Personal Protective Equipment (소방방화복을 착용했을 때의 소방진압 업무 적합도 평가 프로토콜의 개발)

  • Kim, Siyeon;Lee, Joo-Young
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.138-148
    • /
    • 2016
  • A firefighting simulation was developed in order to assess the physical work capacity of firefighters. The simulation consisted of eight common firefighting tasks, including walking with radiant heat for 3 min while wearing full personal protective equipment (PPE). Nine professional firefighters performed the test a total of three times with a 5 min rest interval between each session. The entire series of tests took approximately 30 min to complete ($381{\pm}30s$). Rectal temperatures were found to increase from $37.4{\pm}0.3^{\circ}C$ to $38.5{\pm}0.4^{\circ}C$, while heart rates were found to increase from $92{\pm}18bpm$ to $185{\pm}13bpm$ during testing. Time to completion of the test drills and non-modified physical fitness values showed a significantly negative correlation (r = -0.728, p < 0.05). Firefighters who had longer periods of firefighting service had longer duration time and also recorded higher scores using an integrated scoring system of time to completion (TTC) and physiological strain index (PhSI). The results indicated that the determination of TTC alone can be a misrepresentation of capability, as it neglects to account for accumulated heat strain. The simulated firefighting test provided a useful insight into physical fitness level, but also the comprehensive work capacity of the firefighters when assessed based on TTC and PhSI.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

Water Quality Modeling of the Ara Canal, Using EFDC-WASP Model in Series (3차원 EFDC-WASP 연계모델을 이용한 경인아라뱃길 수질 예측)

  • Yin, Zhenhao;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • Ara Canal is the first artificial canal in Korea that connects the Han River and the Yellow Sea. Due to mixture of waters with different salinity and water quality, complicated hydrodynamic and water quality distributions are expected to occur inside the canal. An integrated hydrodynamic and water quality modeling system was developed using the 3 dimensional hydrodynamic model, EFDC (Environmental Fluid Dynamics Code) and the water quality model WASP (Water Quality Analysis and Simulation Program). According to the modeling results, BOD, TN, TP and Chl-a concentrations inside the canal were lower at the West Gate side than the Han River side since influent concentrations of the West Gate side are significantly lower. Chemical stratification due to salinity difference were more evident at the West Gate side as vertical salinity difference were more pronounced in this area. On the other hand, Chl-a concentrations showed more pronounced vertical distribution at the Han River side as Chl-a concentrations were higher in this area. It was notable that Dissolved Oxygen concentrations can be lower than 2 mg/L occasionally in the middle part of the canal. While major factor affecting DO concentrations in the canal are inflows via both gates, the other important factor was found to be BOD decay in the canal due to extended hydraulic residence time. This study can be used to predict hydrodynamic conditions and water quality in the canal during the year and thus can be helpful in the development of gate operation method of the canal.

Assessing Future Water Demand for Irrigating Paddy Rice under Shared Socioeconomic Pathways (SSPs) Scenario Using the APEX-Paddy Model (APEX-paddy 모델을 활용한 SSPs 시나리오에 따른 논 필요수량 변동 평가)

  • Choi, Soon-Kun;Cho, Jaepil;Jeong, Jaehak;Kim, Min-Kyeong;Yeob, So-Jin;Jo, Sera;Owusu Danquah, Eric;Bang, Jeong Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.1-16
    • /
    • 2021
  • Global warming due to climate change is expected to significantly affect the hydrological cycle of agriculture. Therefore, in order to predict the magnitude of climate impact on agricultural water resources in the future, it is necessary to estimate the water demand for irrigation as the climate change. This study aimed at evaluating the future changes in water demand for irrigation under two Shared Socioeconomic Pathways (SSPs) (SSP2-4.5 and SSP5-8.5) scenarios for paddy rice in Gimje, South Korea. The APEX-Paddy model developed for the simulation of paddy environment was used. The model was calibrated and validated using the H2O flux observation data by the eddy covariance system installed at the field. Sixteen General Circulation Models (GCMs) collected from the Climate Model Intercomparison Project phase 6 (CMIP6) and downscaled using Simple Quantile Mapping (SQM) were used. The future climate data obtained were subjected to APEX-Paddy model simulation to evaluate the future water demand for irrigation at the paddy field. Changes in water demand for irrigation were evaluated for Near-future-NF (2011-2040), Mid-future-MF (2041-2070), and Far-future-FF (2071-2100) by comparing with historical data (1981-2010). The result revealed that, water demand for irrigation would increase by 2.3%, 4.8%, and 7.5% for NF, MF and FF respectively under SSP2-4.5 as compared to the historical demand. Under SSP5-8.5, the water demand for irrigation will worsen by 1.6%, 5.7%, 9.7%, for NF, MF and FF respectively. The increasing water demand for irrigating paddy field into the future is due to increasing evapotranspiration resulting from rising daily mean temperatures and solar radiation under the changing climate.