• 제목/요약/키워드: Integrated Row Driver

검색결과 3건 처리시간 0.016초

Row Driver 회로가 집적된 2.2-inch QCIF+ a-Si TFT-LCD (2-2-inch QCIF+ a-Si TFT-LCD Using Integrated Row Driver Circuits)

  • 윤영준;한승우;정철규;정경훈;김하숙;김서윤;임영진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.559-562
    • /
    • 2004
  • A 2.2-inch QCIF+ $(176{\times}RGB{\times}220)$ TFT-LCD with integrated row driver was developed using a standard amorphous silicon TFT technology. At low temperature $({\sim}-20^{\circ}C)$, the integrated row driver operation is dramatically effected by the electron drift mobility variation $({\sim}50%)$ and the threshold voltage shift $({\sim}1V)$ of the a-Si TFT. We studied the temperature dependency of the circuit design and found that higher on-current circuit is important to guarantee good operation in wide temperature range.

  • PDF

Row Driver 회로가 집적된 2.2-inch QCIF+ a-Si TFT-LCD (2.2-inch QCIF+ a-Si TFT-LCD using Integrated Row Driver Circuits)

  • 윤영준;한승우;정철규;정경훈;김하숙;김서윤;임영진
    • 한국전기전자재료학회논문지
    • /
    • 제18권3호
    • /
    • pp.264-268
    • /
    • 2005
  • A 2.2-inch QCIF+(176${\times}$RGB${\times}$220) TFT-LCD with integrated row driver was developed using a standard amorphous silicon TFT technology. At low temperature, the integrated row driver operation is dramatically effected by the electron drift mobility reduction(■50 %) and the threshold voltage shift (■1V) of the a-Si TFT. We studied the dependency of circuit design and found that higher on-current circuit is important to guarantee good operation in wide temperature range.

Design of MOSFET-Controlled FED integrated with driver circuits

  • Lee, Jong-Duk;Nam, Jung-Hyun;Kim, Il-Hwan
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제3권1호
    • /
    • pp.66-73
    • /
    • 1999
  • In this paper, the design of one-chip FED system integrated with driving circuits in reported on the basis of MOSFET controlled FEA (MCFEA). To integrate a MOSFET with a FEA efficiently, a new fabrication process is proposed. It is confirmed that the MOSFET with threshold voltage of about 2volts controls the FEA emission current up to 20 ${\mu}$A by applying driving voltage of 15 volts, which is enough current level to utilize the MCFEA as a pixel for FED. The drain breakdown voltage of the MOSFET is measured to be 70 volts, which is also high enough for 60 volt operation of FED. The circuits for row and column driver are designed stressing on saving area, reducing malfunction probability and consuming low power to maximize the merit of on-chip driving circuits. Dynamic logic concept and bootstrap capacitors are used to meet these requirements. By integrating the driving circuit with FEA, the number of external I/O lines can be less than 20, irrespectively of the number of pixels.

  • PDF