• Title/Summary/Keyword: Integrated Pollution Intensity

Search Result 4, Processing Time 0.02 seconds

Measure of Environmental Performance through Integrated Pollution Intensities (통합오염원단위 지수를 이용한 환경성과 측정)

  • Kang, Sang-Mok;Chung, Young-Keun;Cho, Joo-Hyun
    • Environmental and Resource Economics Review
    • /
    • v.14 no.1
    • /
    • pp.135-166
    • /
    • 2005
  • This paper measures integrated pollution intensities and changes in pollution intensity, and figure out environmental performance. We introduce a new definition of pollution intensity and its method measuring integrated pollution intensities. We distinguish 24 manufacturing industries into light industry and heavy industry, and divide heavy industry into pollution industry and the other residual heavy industry to measure the integrated pollution intensities and their changes. While the pollution industry within heavy industry, based on the integrated pollution intensity, was the most pollution-intensive, the other residual heavy industry within the heavy industry was the most successive in reducing pollutants. The annualized average index of the integrated pollution intensities grew as much as 9.1 percent, of which the annualized change in the index of pollution emission increased 13.3 percent, but the improvement of 3.9 percent in the change of output quantity offset the increase in the index of pollution emission. The changes in the integrated pollution intensity for the light and heavy industries were 1.125 and 1.042, respectively. The reason the heavy industry showed the lower change in the index of pollution intensity, while the change in the pollution industry was very high, was because the average change in the other heavy industry decreased around 9 percent.

  • PDF

Estimation of Environmental Performance in 29 Chinese Provinces - Focused on Integrated Pollution Intensity - (중국 29개 성의 환경성과 평가 - 통합오염원 단위를 중심으로 -)

  • Kim, Kwang-Uk;Piao, Huilan-Lan;Kang, Sang-Mok
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.71-91
    • /
    • 2011
  • The purpose of this paper is to estimate the environmental performance of 29 Chinese provinces by adopting the advanced measurements, integrated pollution intensity index, IPI, which can be computed using Data Envelopment Analysis(DEA) techniques. This index has the advantage of accounting for multiple resources used, good outputs produced and pollutants emitted simultaneously. The result obtained using the methodology shows the obvious evidence that provinces located around eastern area of China take relatively low levels and these phenomenons have been clearly observed throughout the sample period 1998~2007. The estimated index can be interpreted that the environmental burden in China has been steadily decreased as economic growth. This paper also tries to figure out the relationship among IPI, income levels, economic structures, the level of environmental regulations and FDI inflow. The estimated relationship between IPI and income per capita predicts improving environmental performance with increasing income levels. This explains the improvement in IPI which is simultaneously observed with income increases. According to the 'pollution haven hypothesis', many researches have been concerned the possibility that a large amount of foreign capital has been invested in China to avoid the strict environmental standards in advanced countries. However, the estimated coefficients in all model specifications take negative sign with IPI and highly statistical significant. This is a indication that there are positive impacts of foreign investments on IPI by adopting clean and high technologies from advanced countries.

  • PDF

Correlation analysis of solar radiation and meteorological parameters on high ozone concentration (태양복사 및 기상요소의 고농도 오존형성에 대한 상관성 분석)

  • An, Jae Ho
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.93-98
    • /
    • 2012
  • The concerns on high ozone concentration phenomenon is significantly growing in Seoul metropolitan area including the industry complex area, like Shiwha Banwol area. The aims of this research is the analysis of relationship between high concentrations of $O_3$ and solar radiation parameters in atmosphere. The understanding of the effects of solar radiation intensity, humidity, high air temperature on ozone concentration in a day is very useful to provide a direction for reducing of the high ozone concentration to a local government or a metropolitan government. The correlation analysis between maximum ozone concentration and various meteorological parameters in 2009 - 2011 carried out using IBM's SPSS program. The results showed that the mean correlations coefficient (R) between daily Ozone maximum and solar radiation resulted R = 0.64 during 2011. May - September in 10 air pollution stations. In case of correlations between daily ozone maximum and relative humidity showed negative correlation R = -0.61. The correlation analysis with mean air temperature during 1-3 PM resulted R = 0.29. This low correlation coefficient could be corrected by using of categorized data of ozone concentration. The daily maximum ozone concentration is more dependent on peak solar radiation and high air temperature during 1-3 PM than its simple daily maximum values. The results of this research would be used to develop the high ozone alert system around Seoul metropolitan area. This correlation analysis could be partially integrated to prediction of ozone peak concentration in connection with other methods like classification and regression tree(CART).

Classification of Various Severe Hazes and Its Optical Properties in Korea for 2011~2013 (2011~2013년 한반도에서 관측된 다양한 연무의 분류 및 광학특성)

  • Lee, Kyu-Min;Eun, Seung-Hee;Kim, Byung-Gon;Zhang, Wenting;Park, Jin-Soo;Ahn, Jun-Young;Chung, Kyung-Won;Park, Il-Soo
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.225-233
    • /
    • 2017
  • Korea has recently suffered from severe hazes, largely being long-range transported from China but frequently mixed with domestic pollution. It is important to identify the origin of the frequently-occurring hazes, which is however hard to clearly determine in a quantitative term. In this regard, we suggest a possible classification procedure of various hazes into long-range transported haze (LH), Yellow Sand (YS), and urban haze (UH), based on mass loading of fine particles, time lag of PM mass concentrations between two sites aligned with dominant wind direction, backward trajectory of air mass, and the mass ratio of PM2.5 to PM10. The analysis sites are Seoul (SL) and Baengnyeongdo (BN), which are distant about 200 km from each other in the west to east direction. Aerosol concentrations at BN are overall lower than those of SL, indicative of BN being a background site for SL. We found distinct time lag of PM2.5 and PM10 concentrations between BN and SL in case of both LH and YS, but the intensity of YS being stronger than LH. Time scale (e-folding time scale) of LH appears to be longer and more variable than YS, which implies that LH covers much larger spatial scale. In addition, we found linear and significant correlations between ${\tau}_a$ obtained from sunphotometer and ${\tau}_{cal}$ calculated from surface aerosol scattering coefficient for LH episodes, relative to few correlation between those for YS, which might be associated with transported height of YS being much higher than LH. Therefore surface PM concentrations for the YS period are thought to be not representative for vertical integrated amount of aerosol loadings, probably by virtue of decoupled structure of aerosol vertical distribution. Improvement of various hazes classification based on the current result would provide the public as well as researchers with more accurate information of LH, UH, and YS, in terms of temporal scale, size, vertical distribution of aerosols, etc.