• Title/Summary/Keyword: Integrated Optic

Search Result 114, Processing Time 0.028 seconds

Crosstalk-Enhanced DOS Integrated with Modified Radiation-Type Attenuators

  • Han, Young-Tak;Shin, Jang-Uk;Park, Sang-Ho;Han, Sang-Pil;Lee, Chul-Hee;Noh, Young-Ouk;Lee, Hyung-Jong;Baek, Yong-Soon
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.744-746
    • /
    • 2008
  • This letter presents a crosstalk-enhanced polymer thermo-optic digital optical switch operating at a low power consumption. Modified radiation-type attenuators are integrated in a series with a conventional $1{\times}2$ digital optical switch. A low optical crosstalk of less than -45 dB is attained at a low applied switching power of 60 mW, and an insertion loss of about 1.1 dB is exhibited.

  • PDF

Integrated Photonic RF Phase Shifter Using an Electrooptic Polymer Modulator (전기광학폴리머 변조기틀 이용한 집적광학적 RF 위상변환기)

  • 이상신
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.274-277
    • /
    • 2004
  • An integrated photonic radio frequency (RF) phase shifter has been proposed and fabricated using a nested dual Mach-Zehnder modulator configuration in a new electro-optic polymer. The fabricated device shows a continuous voltage control of the RF signal phase. A near-linear phase shift exceeding 108$^{\circ}$was obtained for a 16-GHz microwave signal by tuning the do control voltage over a 7.8- $V_{pp}$ range.e.

A Study on Electrooptic $Ti:LiNbO_3$ Mach-Zehnder integrated-optic interferometers for Electric-Field Measurement (전계측정용 전기광학 $Ti:LiNbO_3$ Mach-Zehnder 집적광학 간섭기에 관한 연구)

  • Jung, Hong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.15-22
    • /
    • 2011
  • Integrated-optic symmetric/asymmetric Mach-Zehnder interferometers at $1.3{\mu}m$ wavelength were studied as sensing part for electric-field measurement system. The devices were simulated based on the BPM software and fabricated utilizing Ti-diffused $LiNbO_3$ channel optical waveguides and lumped-type electrodes. A half-wave voltage of $V_{\pi}$=6.6V and modulation depth of 100% and 75% for a symmetric structure were measured for 200Hz and 1kHz electrical signal bandwidth, respectively. By the way, almost half-maximum power transmission was observed for asymmetric interferometers with ${\pi}$/2 intrinsic phase difference. Expected experimental measurements were observed for 1kHz electrical signal bandwidth.

Design of Integrated-Optic Biosensor Based on the Evanescent-Field and Two-Horizontal Mode Power Coupling of Si3N4 Rib-Optical Waveguide (Si3N4 립-광도파로의 두-수평모드 파워결합과 소산파 기반 집적광학 바이오센서 설계)

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.172-179
    • /
    • 2020
  • We studied an integrated-optic biosensor configuration that operates at a wavelength of 0.63 ㎛ based on the evanescent-wave and two horizontal mode power coupling of Si3N4 rib-optical waveguides formed on a Si/SiO2/Si3N4/SiO2 multilayer thin films. The sensor consists of a single-mode input waveguide, followed by a two-mode section which acts as the sensing region, and a Y-branch output for separating the two output waveguides. The coupling between the two propagating modes in the sensing region produces a periodically repeated optical power exchanges along the propagation. A light power was steered from one output channel to the other due to the change in the cladding layer (bio-material) refractive index, which affected the effective refractive index (phase-shift) of two modes through evanescent-wave. Waveguide analyses based on the rib optical waveguide dimensions were performed using various numerical computational software. Sensitivity values of 12~23 and 65~165 au/RIU, respectively for the width and length of 4 ㎛, and 3841.46 and 26250 ㎛ of the two-mode region corresponding to the refractive index range 1.36~1.43 and 1.398~1.41, respectively, were obtained.

Design and fabrication of temperature-independent AWG-WDM devices using polymer overcladding (폴리머 상부클래드를 이용한 온도무의존 AWG 파장분할 다중화 소자의 설계 및 제작)

  • Han, Young-Tak;Kim, Duk-Jun;Shin, Jang-Uk;Park, Sang-Ho;Park, Yoon-Jung;Sung, Hee-Kyeng
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.135-141
    • /
    • 2003
  • In arrayed waveguide grating (AWG) devices whose waveguides were composed of polymer with negative thermo-optic coefficient as overcladding, and silica with positive thermo-optic coefficient as both core and undercladding, we investigated the temperature dependence of the central wavelength using two-dimensional SFDM. From these results, it was confirmed that the temperature dependence can be nearly eliminated by adjusting the refractive index of the cladding and the thickness of the silica thin film upper-loaded on the core. Based on the numerical calculations, the AWG device with polymer overcladding was fabricated. and its optical characteristics were compared with those of the orginal silica AWG device. The introduction of polymer overcladding decreased the temperature dependence of the central wavelength from 0.0130 nm/$^{\circ}C$ to 0.0028 nm/$^{\circ}C$ without deteriorating the insertion loss and crosstalk characteristics.

Optimization of Thermo-Optic Parameters for Temperature-Insensitive LPWG Refractometers

  • Lee, Dong-Seok;Kim, Kyong-Hon;Hwang, Seok-Hyun;Lee, Min-Hee;Lee, El-Hang
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.739-744
    • /
    • 2006
  • In this paper, we report numerically calculated results of testing a temperature-insensitive refractive sensor based on a planar-type long-period waveguide grating (LPWG). The LPWG consists of properly chosen polymer materials with an optimized thermo-optic coefficient for the core layer in a four-layer waveguide structure. The resonant wavelength shift below the spectral resolution of the conventional optical spectrum analyzer is obtained accurately over a temperature change of ${\pm}7.5^{\circ}C$ even without any temperature control. The refractive index sensitivity of the proposed grating scheme is about 0.004 per resonant wavelength shift of 0.1 nm for an optimized thermo-optic coefficient.

  • PDF

Common-path Optical Coherence Tomography for Biomedical Imaging and Sensing

  • Kang, Jin-U.;Han, Jae-Ho;Liu, Xuan;Zhang, Kang
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • This paper describes a development of a fiber optic common-path optical coherence tomography (OCT) based imaging and guided system that possess ability to reliably identify optically transparent targets that are on the micron scale; ability to maintain a precise and safe position from the target; ability to provide spectroscopic imaging; ability to imaging biological target in 3-D. The system is based on a high resolution fiber optic Common-Path OCT (CP-OCT) that can be integrated into various mini-probes and tools. The system is capable of obtaining >70K A-scan per second with a resolution better than $3\;{\mu}m$. We have demonstrated that the system is capable of one-dimensional real-time depth tracking, tool motion limiting and motion compensation, oxygen-saturation level imaging, and high resolution 3-D images for various biomedical applications.