• Title/Summary/Keyword: Integrated Monitoring

Search Result 1,237, Processing Time 0.029 seconds

Effect of Total Resistance of Electrochemical Cell on Electrochemical Impedance of Reinforced Concrete Using a Three-Electrode System (3전극방식을 활용한 철근 콘크리트의 교류임피던스 측정 시 전기화학 셀저항의 영향)

  • Khan, Md. Al-Masrur;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.82-92
    • /
    • 2022
  • This study aims to investigate the effect of total electrochemical cell resistance (TECR) on electrochemical impedance (EI) measurements of reinforced concrete (RC) by electrochemical impedance spectroscopy (EIS) using a three-electrode system. A series of experimental study is performed to measure electrochemical behavior of a steel bar embedded in a concrete cube specimen, with a side length of 200 mm, in various experimental conditions. Main variables include concrete dry conditions, coupling resistance between sensing electrodes and concrete surface, and area of the counter electrode. It is demonstrated that EI values remains stable when the compliant voltage of a measuring device is sufficiently great compared to the potential drop caused by TECR of concrete specimens. It is confirmed that the effect of the coupling resistance of TECR is far more influential than other two factors (concrete dry conditions and area of the counter electrode). The results in this study can be used as a fundamental basis for development of a surface-mount sensor for corrosion monitoring of reinforced concrete structures exposed to wet-and-dry cycles under marine environment.

A Discussion on Container Loss Accidents and Responses During Ship Voyage (선박 운항 중 컨테이너 해상유실 사고 및 대응에 관한 고찰)

  • Hwang, Daejung
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.331-337
    • /
    • 2022
  • In 2021, the Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP), a U.N. advisory research institute, cited container loss as one of six sources of marine litters in shipping. The sinking of the X-P ress Pearl in May 2021 caused a catastrophic environmental pollution accident in which the loaded containers were moved to the shore, and the plastic pellets were loaded inside covered the coast of Sri Lanka. With this history, the International Maritime Organization (IMO) will discuss prevention and follow-up measures for container loss during ship voyages, as an agenda at the 8th Sub Committee on Carriage of Cargoes and Containers meeting in September 2022. To establish Korea's response direction at the IMO meeting, this study identified major causes of container loss accidents, and considered the response through analysis based on the accident investigation report and related professional data. As a result, it was found that the major cause of container loss during voyages was the enlargement of container ships, bad weather, and poor loading of containers. In particular, the need to prepare countermeasures for the deterioration of the operational safety of large container ships due to bad weather was identified. Additionally, integrated monitoring of the implementation of international conventions is required, for the safe sea transportation of container cargo. In particular, in terms of preservation of the marine environment, it is necessary to supplement the system for the recovery of lost containers. Finally, it was found that it is necessary to establish systems that can complement each other in the shipbuilding and shipping industries, in terms of shipbuilding as well as ship operation, to fundamentally prevent container loss accidents at sea. It is judged that it is difficult to resolve the various factors of container loss at sea during voyages, by responding from an individual perspective.

A Study on Falling Detection of Workers in the Underground Utility Tunnel using Dual Deep Learning Techniques (이중 딥러닝 기법을 활용한 지하공동구 작업자의 쓰러짐 검출 연구)

  • Jeongsoo Kim;Sangmi Park;Changhee Hong
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.498-509
    • /
    • 2023
  • Purpose: This paper proposes a method detecting the falling of a maintenance worker in the underground utility tunnel, by applying deep learning techniques using CCTV video, and evaluates the applicability of the proposed method to the worker monitoring of the utility tunnel. Method: Each rule was designed to detect the falling of a maintenance worker by using the inference results from pre-trained YOLOv5 and OpenPose models, respectively. The rules were then integrally applied to detect worker falls within the utility tunnel. Result: Although the worker presence and falling were detected by the proposed model, the inference results were dependent on both the distance between the worker and CCTV and the falling direction of the worker. Additionally, the falling detection system using YOLOv5 shows superior performance, due to its lower dependence on distance and fall direction, compared to the OpenPose-based. Consequently, results from the fall detection using the integrated dual deep learning model were dependent on the YOLOv5 detection performance. Conclusion: The proposed hybrid model shows detecting an abnormal worker in the utility tunnel but the improvement of the model was meaningless compared to the single model based YOLOv5 due to severe differences in detection performance between each deep learning model

Statistical Techniques to Detect Sensor Drifts (센서드리프트 판별을 위한 통계적 탐지기술 고찰)

  • Seo, In-Yong;Shin, Ho-Cheol;Park, Moon-Ghu;Kim, Seong-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.103-112
    • /
    • 2009
  • In a nuclear power plant (NPP), periodic sensor calibrations are required to assure sensors are operating correctly. However, only a few faulty sensors are found to be calibrated. For the safe operation of an NPP and the reduction of unnecessary calibration, on-line calibration monitoring is needed. In this paper, principal component-based Auto-Associative support vector regression (PCSVR) was proposed for the sensor signal validation of the NPP. It utilizes the attractive merits of principal component analysis (PCA) for extracting predominant feature vectors and AASVR because it easily represents complicated processes that are difficult to model with analytical and mechanistic models. With the use of real plant startup data from the Kori Nuclear Power Plant Unit 3, SVR hyperparameters were optimized by the response surface methodology (RSM). Moreover the statistical techniques are integrated with PCSVR for the failure detection. The residuals between the estimated signals and the measured signals are tested by the Shewhart Control Chart, Exponentially Weighted Moving Average (EWMA), Cumulative Sum (CUSUM) and generalized likelihood ratio test (GLRT) to detect whether the sensors are failed or not. This study shows the GLRT can be a candidate for the detection of sensor drift.

Inferring Pedestrian Level of Service for Pathways through Electrodermal Activity Monitoring

  • Lee, Heejung;Hwang, Sungjoo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1247-1248
    • /
    • 2022
  • Due to rapid urbanization and population growth, it has become crucial to analyze the various volumes and characteristics of pedestrian pathways to understand the capacity and level of service (LOS) for pathways to promote a better walking environment. Different indicators have been developed to measure pedestrian volume. The pedestrian level of service (PLOS), tailored to analyze pedestrian pathways based on the concept of the LOS in transportation in the Highway Capacity Manual, has been widely used. PLOS is a measurement concept used to assess the quality of pedestrian facilities, from grade A (best condition) to grade F (worst condition), based on the flow rate, average speed, occupied space, and other parameters. Since the original PLOS approach has been criticized for producing idealistic results, several modified versions of PLOS have also been developed. One of these modified versions is perceived PLOS, which measures the LOS for pathways by considering pedestrians' awareness levels. However, this method relies on survey-based measurements, making it difficult to continuously deploy the technique to all the pathways. To measure PLOS more quantitatively and continuously, researchers have adopted computer vision technologies to automatically assess pedestrian flows and PLOS from CCTV videos. However, there are drawbacks even with this method because CCTVs cannot be installed everywhere, e.g., in alleyways. Recently, a technique to monitor bio-signals, such as electrodermal activity (EDA), through wearable sensors that can measure physiological responses to external stimuli (e.g., when another pedestrian passes), has gained popularity. It has the potential to continuously measure perceived PLOS. In their previous experiment, the authors of this study found that there were many significant EDA responses in crowded places when other pedestrians acting as external stimuli passed by. Therefore, we hypothesized that the EDA responses would be significantly higher in places where relatively more dynamic objects pass, i.e., in crowded areas with low PLOS levels (e.g., level F). To this end, the authors conducted an experiment to confirm the validity of EDA in inferring the perceived PLOS. The EDA of the subjects was measured and analyzed while watching both the real-world and virtually created videos with different pedestrian volumes in a laboratory environment. The results showed the possibility of inferring the amount of pedestrian volume on the pathways by measuring the physiological reactions of pedestrians. Through further validation, the research outcome is expected to be used for EDA-based continuous measurement of perceived PLOS at the alley level, which will facilitate modifying the existing walking environments, e.g., constructing pathways with appropriate effective width based on pedestrian volume. Future research will examine the validity of the integrated use of EDA and acceleration signals to increase the accuracy of inferring the perceived PLOS by capturing both physiological and behavioral reactions when walking in a crowded area.

  • PDF

Application of Zooplankton Index for Korean Lake Health Assessment; Verification of Community Index for Lake Assessment Using Multi Metric (호소생태계 건강성 평가를 위한 동물플랑크톤 MMI의 국내 적용 연구)

  • Yerim Choi;Hye-Ji Oh;Hyunjoon Kim;Geun-Hyeok Hong;Dae-Hee Lee;Ihn-Sil Kwak;Chang Woo Ji;Young-Seuk Park;Yong-Jae Kim;Kwang-Hyeon Chang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.70-82
    • /
    • 2023
  • Recently, Korean government has introduced Multi Metric Indices (MMI) using various biocommunity information for aquatic ecosystem monitoring and ecosystem health assessment at the national level. MMI is a key tool in national ecosystem health assessment programs. The MMI consists of indices that respond to different target environmental factors, including environmental disturbance (e.g. nutrients, hydrological and hydraulic situation of site etc.). We used zooplankton community information collected from Korean lakes to estimate the availability of candidate zooplankton MMI indices that can be used to assess lake ecosystem health. First, we modified the candidate indices proposed by the U.S. EPA to suit Korean conditions. The modified indices were subjected to individual index suitability analysis, correlation analysis with environmental variables, and redundancy analysis among indices, and 19 indices were finally selected. Taxonomic diversity was suggested to be an important indicator for all three taxonomic groups (cladoceran, copepod, rotifer), on the other hand, the indices using biomass for large cladocerans and copepods, while the indices using abundance were suggested for small cladocerans and rotifers.

Compressibility and Stiffness Characteristics of Vanishing Mixtures (지반 소실 혼합재의 압축성 및 강성 특성)

  • Truong, Q. Hung;Eom, Yong-Hun;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.103-111
    • /
    • 2008
  • Soils naturally contain grains of different minerals which may be dissolved under chemical or physical processes. The dissolution leads changes in microstructure of particulate media, such as an increase in local void or permeability, which affects the strength and deformation of soils. This study focuses on the small strain stiffness characteristics of vanishing mixtures, which consist of sand and salt particles at different volume fractions. Experiments are carried out in a conventional oedometer cell (Ko-loading) integrated with bender elements for the measurement of shear waves. Dissolutions of particles are implemented by saturating the mixtures at various confining stresses. Axial deformation and shear waves are recorded after each loading stage and during dissolution process. Experimental results show that after dissolution, the vertical strain and the void ratio increase, while the shear wave velocity and small strain shear modulus decrease. The decrease of the velocity results from the void ratio increase and particle contact decrease. The process monitoring during dissolution of the particles shows that the vertical strain dramatically increases at the beginning of the saturation process and converges after vanishing process finishes, and that the shear wave velocity decreases at the beginning and increases due to the particle reorientation. Specimens prepared by sand and salt particles are proved to be able to provide a valuable insight in macro structural behaviors of the vanishings mixtures.

Leading, Coincident, Lagging INdicators to Analyze the Predictability of the Composite Regional Index Based on TCS Data (지역 경기종합지수 예측 가능성 검토를 위한 TCS 데이터 선행·동행·후행성 분석 연구)

  • Kang, Youjeong;Hong, Jungyeol;Na, Jieun;Kim, Dongho;Cheon, Seunghun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.209-220
    • /
    • 2022
  • With the worldwide spread of African swine fever, interest in livestock epidemics has increased. Livestock transport vehicles are the main cause of the spread of livestock epidemics, but there are no empirical quarantine procedures and standards related to the mobility of livestock transport vehicles in South Korea. This study extracted the trajectory of livestock-related vehicles using the facility-visit history data from the Korea Animal Health Integrated System and the DTG (Digital Tachograph) data from the Korea Transportation Safety Authority. The results are presented as exposure indices aggregating the link-time occupancy of each vehicle. As a result, 274,519 livestock-related vehicle trajectories were extracted, and the exposure values by link and zone were derived quantitatively. This study highlights the need for prior monitoring of livestock transport vehicles and the establishment of post-disaster prevention policies.

Development of Flow Loop System to Evaluate the Performance of ESP in Unconventional Oil and Gas Wells (비전통 유·가스정에서 ESP 성능 평가를 위한 Flow Loop 시스템 개발)

  • Sung-Jea Lee;Jun-Ho Choi;Jeong-Hwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.7-15
    • /
    • 2023
  • The electric submersible pump (ESP) has been operating in production wells around the world because of its high applicability and operational efficiency among artificial lift techniques. When operating an ESP in a reservoir, variables such as temperature, pressure, gas/oil ratio, and flow rate are factors that affect ESP performance. In particular, free gas in the production fluid is a major factor that reduces the life and operational efficiency of ESP. This study presents the flow loop system which can implement the performance and damage tests of ESP considering field operating conditions to quantitatively analyze the variables that affect ESP performance. The developed apparatus in an integrated system that can diagnose the failure and causes of ESP, and detect leak of tubing by linking ESP and tubing as one system. In this study, the flow conditions for stable operation of ESP were identified through single phase and two phase flow experiments related to evaluation for the performance of ESP. The results provide the basic data to develop the failure prediction and diagnosis program of ESP, and are expected to be used for real-time monitoring for optimal operating conditions and failure diagnosis for ESP operation.

Assessment of Heavy Metal Exposure Levels (Pb, Hg, Cd) among South Koreans and Contribution Rates by Exposure Route - Korean National Environmental Health Survey (KoNEHS) Cycle 4 (2018~2020) - (한국인의 체내 중금속(납, 수은, 카드뮴)의 노출수준 및 노출경로별 기여율 평가 - 제4기 국민환경보건 기초조사(2018~2020) -)

  • Gihong Min;Jihun Shin;Dongjun Kim;Jaemin Woo;Kyeonghwa Sung;Mansu Cho;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.5
    • /
    • pp.262-274
    • /
    • 2023
  • Background: Exposure levels for heavy metals such as lead (Pb), mercury (Hg), and cadmium (Cd) have increased due to human activities. They are known to be a public health concern. Objectives: This study aimed to determine the exposure levels to heavy metals in the blood and urine of South Korean adults and to present the contribution rate of exposure pathways using an exposure algorithm for men aged 19~64, women aged 19~64, and all seniors aged 65 or older. Methods: We analyzed data from the Korean National Environmental Health Survey (KoNEHS) Cycle 4 (2018~2020). A total of 2,646 participants aged ≥19 years were included. Multiple regression analysis was performed to determine the factors affecting heavy metal concentrations. The contribution rate was calculated by applying three exposure algorithms for ingestion, inhalation, and dermal exposure. Results: Factors that commonly affect heavy metal concentrations in blood and urine were gender and age. The main influencing factors for Pb and Cd were education level and smoking status, while frequency of fish consumption and of alcohol consumption were indicated to be the main influencing factors for mercury. The contribution rates of lead and cadmium from food ingestion were 78.03~79.62% and 88.39~92.89%, respectively. Additionally, the highest contribution for mercury was accounted for by food at 81.69~85.77%. As a result of the risk assessment, cadmium was found to pose a potential health risk a with total cancer risk (TCR) of more than 1×10-6. Conclusions: The KoNEHS could be an important study for determining the level of exposure to heavy metals and their influencing factors. Integrated exposure to heavy metals could assess the main exposure pathways, and this methodology could be applied to exposure management of heavy metals.