• Title/Summary/Keyword: Integrated Modeling

Search Result 1,354, Processing Time 0.028 seconds

A Study on the Optimization of Color Module BIPV Architectural Design Using BIM - Based on the data of Seoul surveyed solar radiation - (BIM을 활용한 컬러모듈 BIPV 건축 설계 최적화 방안 연구 - 서울 지역 실증 일사량 데이터 중심으로 -)

  • Jeon, Hyun-Woo;Yoon, Hea-Kyung;Park, Suh-Jun
    • Journal of KIBIM
    • /
    • v.9 no.3
    • /
    • pp.19-29
    • /
    • 2019
  • Currently, BIPV (Building Integrated Photovoltaic) design technology lacks analysis function at the planning stage, and there is a lack of understanding and reliability of BIPV design method and system for building designers. To design and consider various building integrated solar design alternatives, the color of building integrated solar is often monotonous or does not match the design direction of the building. In this study, architectural designers can select various color modules in the planning and design process of the building and analyze the characteristics of color module solar cells and compare and analyze the actual solar radiation and predicted solar radiation in Republic ofKorea Seoul to reduce the confusion of design methods. By building a BIM design integrated system that can prove the quality of the building and analyze the shading analysis and power generation performance architecturally, it can improve the reliability of color module solar cell applicability that can express aesthetics in buildings and the predicted solar power generation capacity of each region. In the initial design stage, based on the empirical data of the BIPV system, it is possible to analyze the power generation performance for each installation angle and installation direction by analyzing the surrounding environment and the installation area, and accurately determine the appropriateness of the design accordingly.

Quantitative Estimation of Radiation Damage in Reactor Pressure Vessel Steels by Using Multiscale Modeling (멀티스케일 모델링을 이용한 압력용기강의 조사손상 정량예측)

  • Lee, Gyeong-Geun;Kwon, Junhyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.113-121
    • /
    • 2014
  • In this work, an integrated model including molecular dynamics and chemical rate theory was implemented to calculate the growth of point defect clusters(PDC) and copper-rich precipitates(CRP) which could change the mechanical properties of reactor pressure vessel(RPV) steels in a nuclear power plant. A number of time-dependent differential equations were established and numerically integrated to estimate the evolution of irradiation defects. The calculation showed that the concentration of the vacancies was higher than that of the self-interstitial atoms. The higher concentration of vacancies induced a formation of the CRPs in the later stage. The size of the CRPs was used to estimate the mechanical property changes in RPV steels, as is the same case with the PDCs. The calculation results were compared with the measured values of yield strength change and Charpy V-notch transition temperature shift, which were obtained from the surveillance test data of Korean light water reactors(LWRs). The estimated values were in fair agreement with the experimental results in spite of the uncertainty of the modeling parameters.

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.

Requirement Analysis Using UML on PDM System Development (UML을 이용한 PDM 시스템 요구사항 분석)

  • Oh, Dae-Kyun;Kim, Yong-Gyun;Lee, Jang-Hyun;Shin, Jong-Gye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.121-130
    • /
    • 2008
  • The concept of integrated product information has been universalized so that many manufacturing industries have applied the concept to their production system. The field of PDM (Product Data Management), which is one of the core components of the integrated product information, is not an exception. Therefore, various PLM (Product Lifecycle Management) software providers are in process of suggesting the PDM solutions. As the PDM solution is widely adopted in the manufacturing industries, the successful application of the solution has been gathering more strength in manipulation of the product information. However, the standardized implementation methodology is stuck in the basic level contrast with the enhanced PDM's functionality and capability. Present study refers to the application of UML (Unified Modeling Language), which is an object oriented modeling description, to PDM system development procedure. The advantage of UML is its efficiency and effectiveness in handling complex requirement often found in PDM implementation works. This paper shows the integration of PDM and UML proposes a philosophy for the support of requirement analysis throughout the full implementation of PDM system.

Development of Mobile 3D Urban Landscape Authoring and Rendering System

  • Lee Ki-Won;Kim Seung-Yub
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.221-228
    • /
    • 2006
  • In this study, an integrated 3D modeling and rendering system dealing with 3D urban landscape features such as terrain, building, road and user-defined geometric ones was designed and implemented using $OPENGL\;{|}\;ES$ (Embedded System) API for mobile devices of PDA. In this system, the authoring functions are composed of several parts handling urban landscape features: vertex-based geometry modeling, editing and manipulating 3D landscape objects, generating geometrically complex type features with attributes for 3D objects, and texture mapping of complex types using image library. It is a kind of feature-based system, linked with 3D geo-based spatial feature attributes. As for the rendering process, some functions are provided: optimizing of integrated multiple 3D landscape objects, and rendering of texture-mapped 3D landscape objects. By the active-synchronized process among desktop system, OPENGL-based 3D visualization system, and mobile system, it is possible to transfer and disseminate 3D feature models through both systems. In this mobile 3D urban processing system, the main graphical user interface and core components is implemented under EVC 4.0 MFC and tested at PDA running on windows mobile and Pocket Pc. It is expected that the mobile 3D geo-spatial information systems supporting registration, modeling, and rendering functions can be effectively utilized for real time 3D urban planning and 3D mobile mapping on the site.

TMUML: A Singular TM Model with UML Use Cases and Classes

  • Al-Fedaghi, Sabah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.127-136
    • /
    • 2021
  • In the systems and software modeling field, a conceptual model involves modeling with concepts to support development and design. An example of a conceptual model is a description developed using the Unified Modeling Language (UML). UML uses a model multiplicity formulation approach, wherein a number of models are used to represent alternative views. By contrast, a model singularity approach uses only a single integrated model. Each of these styles of modeling has its strengths and weaknesses. This paper introduces a partial solution to the issue of multiplicity vs. singularity in modeling by adopting UML use cases and class models into the conceptual thinging machine (TM) model. To apply use cases, we adopt the observation that a use-case diagram is a description that shows the internal structure of the part of the system represented by the use case in addition to being useful to people outside of the system. Additionally, the UML class diagram is recast in TM representation. Accordingly, we develop a TMUML model that embraces the TM specification of the UML class diagram and the internal structure extracted from the UML use case. TMUML modeling introduces some of the advantages that have made UML a popular modeling language to TM modeling. At the same time, this approach supplies UML with partial model singularity. The paper details experimentation with TMUML using examples from the literature. Our results indicate that mixing UML with other models could be a viable approach.

A Study on Ontology and Topic Modeling-based Multi-dimensional Knowledge Map Services (온톨로지와 토픽모델링 기반 다차원 연계 지식맵 서비스 연구)

  • Jeong, Hanjo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.79-92
    • /
    • 2015
  • Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology and a topic modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patents, and reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a Relational Data-to-Triples transformer is implemented. Also, a topic modeling approach is introduced to extract the document-topic relationships. A triple store is used to manage and process the ontology data while preserving the network characteristics of knowledge map service. Knowledge map can be divided into two types: one is a knowledge map used in the area of knowledge management to store, manage and process the organizations' data as knowledge, the other is a knowledge map for analyzing and representing knowledge extracted from the science & technology documents. This research focuses on the latter one. In this research, a knowledge map service is introduced for integrating the national R&D data obtained from National Digital Science Library (NDSL) and National Science & Technology Information Service (NTIS), which are two major repository and service of national R&D data servicing in Korea. A lightweight ontology is used to design and build a knowledge map. Using the lightweight ontology enables us to represent and process knowledge as a simple network and it fits in with the knowledge navigation and visualization characteristics of the knowledge map. The lightweight ontology is used to represent the entities and their relationships in the knowledge maps, and an ontology repository is created to store and process the ontology. In the ontologies, researchers are implicitly connected by the national R&D data as the author relationships and the performer relationships. A knowledge map for displaying researchers' network is created, and the researchers' network is created by the co-authoring relationships of the national R&D documents and the co-participation relationships of the national R&D projects. To sum up, a knowledge map-service system based on topic modeling and ontology is introduced for processing knowledge about the national R&D data such as research projects, papers, patent, project reports, and Global Trends Briefing (GTB) data. The system has goals 1) to integrate the national R&D data obtained from NDSL and NTIS, 2) to provide a semantic & topic based information search on the integrated data, and 3) to provide a knowledge map services based on the semantic analysis and knowledge processing. The S&T information such as research papers, research reports, patents and GTB are daily updated from NDSL, and the R&D projects information including their participants and output information are updated from the NTIS. The S&T information and the national R&D information are obtained and integrated to the integrated database. Knowledge base is constructed by transforming the relational data into triples referencing R&D ontology. In addition, a topic modeling method is employed to extract the relationships between the S&T documents and topic keyword/s representing the documents. The topic modeling approach enables us to extract the relationships and topic keyword/s based on the semantics, not based on the simple keyword/s. Lastly, we show an experiment on the construction of the integrated knowledge base using the lightweight ontology and topic modeling, and the knowledge map services created based on the knowledge base are also introduced.

Integrated Management of Process Schedule and Quantity Take-Off for Steel Structures using BIM Information (BIM정보를 활용한 강구조물의 공정 물량 통합관리)

  • Kim, Jin-Uk;Shin, Tae-Song
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.10-18
    • /
    • 2018
  • BIM technologies store, share and integrate the information produced in each sector of the construction industry. From this point on, it increases the efficiency of the work. Currently, quantity take-off and process schedule are derived separately based on BIM technology. When calculating the quantity by process, relevant information shall be collected, reinterpreted, and reevaluated as required by the practice. The purpose of this study is to develop an integrated process and quantity management system through BIM collaboration and to build prototypes for steel structures. The main research is to build a construction BIM model for steel structures and a process BIM model through BIM collaboration. Furthermore, necessary information was selected and processed according to the user's needs for integrated management. Relevant integration outcomes are visualized graphically to maximize utilization. Through these studies, a system for integrated control of processes and supplies is provided, and the results are expected to contribute to the improvement of working efficiency and are easily and quickly reflected in design change and process change. In this study, we intended to enhance the usability of information by linking process schedules with quantity calculations based on BIM. Thus, the process for integrated control of the quantity of structural components by process unit and the BIM based schedule information was established. In addition, the efficiency of the information link of the integrated management system was considered for design changes and process schedule changes.

An Integrated Framework for Modeling the Influential Factors Affecting the Use of Voice-Enabled IoT Devices: A Case Study of Amazon Echo

  • Temidayo Oluwapelumi Shofolahan;Juyoung Kang
    • Asia pacific journal of information systems
    • /
    • v.28 no.4
    • /
    • pp.320-349
    • /
    • 2018
  • Purpose: The application of IoT is finding continuous acceptance in our daily lives, particularly, smart speakers are making life easier and convenient for consumers. This research aims to develop and test an integrated model of factors influencing consumer's adoption of voice-enabled IoT devices. Design/methodology/approach: Based on the VAM, an integrated voice-enabled IoT device adoption model is proposed. Gender differences on five constructs relating with perceived value (perceived usefulness, perceived enjoyment, perceived security risk, perceived technicality and perceived cost) was also examined through PLS-MGA technique. The usage experience of consumers was also controlled in the integrated VAM. Findings: Result shows that Perceived-Usefulness, Perceived-Enjoyment and Perceived-Cost have a strong effect on Perceived-Value. However, Perceived-Technicality and Perceived-Security-Risk are non-influential and have no significant effect on PV. Additionally, Perceived-Value and Social-Influence plays a significant role in predicting adoption intention. Gender differences also exist in consumers perception of usefulness, enjoyment and cost. In comparison to the basic value-based adoption model, the integrated model provides more insight on consumers adoption of voice-enabled IoT devices. Originality/value: Using an integrated model, this study is one of the first scholarly attempt at modelling the influential factors for adopting smart speakers i.e., voice-enabled IoT devices, with implications for improved adoption.