• Title/Summary/Keyword: Integrated Gasification Combined Cycle (IGCC)

Search Result 110, Processing Time 0.024 seconds

Performance Analysis of IGCC Gas Turbine Considering Turbine Operation Condition Change due to Modulation of Nitrogen Dilution (질소희석량 조절에 따른 터빈 운전조건 변화를 고려한 IGCC 용 가스터빈의 성능분석)

  • Kim, Chang Min;Kang, Do Won;Kim, Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1023-1029
    • /
    • 2013
  • The integration between a gas turbine and an air separation unit (ASU) is important in IGCC plants. The portion of ASU air extracted from the gas turbine and the degree of nitrogen supply from the ASU to the gas turbine side are important operating parameters. Their effect on the gas turbine performance and operability should be considered in a wide ambient temperature range. In this study, appropriate nitrogen dilution rate and turbine inlet temperature that satisfy the two limitations of turbine blade temperature and maximum allowable power output were predicted. The air integration was set at zero. The simulation showed that the power output increases and turbine blade temperature decreases as the nitrogen dilution increases. The maximum allowable power output can be obtained under medium and low ambient temperature ranges. Under a high ambient temperature range, the achievable power is less than the maximum power.

Performance Analysis of Shell Coal Gasification Combined Cycle systems (Shell 석탄가스화 복합발전 시스템의 성능해석 연구)

  • Kim, Jong-Jin;Park, Moung-Ho;Song, Kyu-So;Cho, Sang-Ki;Seo, Seok-Bin;Kim, Chong-Young
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.104-113
    • /
    • 1997
  • This study aims to develop an analysis model using a commercial process simulator-ASPEN PLUS for an IGCC (Integrated Gasification Combined Cycle) system consisting a dry coal feeding, oxygen-blown entrained gasification process by Shell, a low temperature gas clean up process, a General Electric MS7001FA gas turbine, a three pressure, natural recirculation heat recovery steam generator, a regenerative, condensing steam turbine and a cryogenic air separation unit. The comparison between those results of this study and reference one done by other engineer at design conditions shows consistency which means the soundness of this model. The greater moisture contents in Illinois#6 coal causes decreasing gasifier temperature and the greater ash and sulfur content hurt system efficiency due to increased heat loss. As the results of sensitivity analysis using developed model for the parameters of gasifier operating pressure, steam/coal ratio and oxygen/coal ratio, the gasifier temperature increases while combustible gases (CO+H2) decreases throughout the pressure going up. In the steam/coal ratio analysis, when the feeding steam increases the maximum combustible gas generation point moves to lower oxygen/coal ratio feeding condition. Finally, for the oxygen/coal ratio analysis, it shows oxygen/coal ratio 0.77 as a optimum operating condition at steam/coal feeding ratio 0.2.

  • PDF

Study of Kinetics for Removal H2S by Natural Manganese ore Sorbent (황화수소 제거를 위한 천연망간광석 탈황제의 반응 속도 연구)

  • Yoon, Yeo Il;Kim, Myung Wook;Kim, Sung Hyun
    • Clean Technology
    • /
    • v.7 no.3
    • /
    • pp.187-194
    • /
    • 2001
  • The desulfurization process which belongs to the gas refining part is the unit process that eliminates $H_2S$ and COS in the coal gas formed by the coal gasification part in the integrated gasification combined cycle(IGCC). In this study, natural manganese ores were selected as the raw material of the desulfurization sorbent due to economical efficiency. Initial rates for the reactions between $H_2S$ and desulfurization sorbent using natural manganese ores were determined in a temperature range of $400{\sim}800^{\circ}C$ using a thermobalance reactor. All reactions were first order with respect to $H_2S$ and were in accord with the Arrhenius equations. When sulfidation reaction was controlled by diffusion, the temperature dependence of the effective diffusivity was given by the Arrhenius equation. Activation energies and frequency factors were obtained from the product layer diffusion coefficient of various sorbents by plotting as Arrhenius equation form.

  • PDF

Technical Review of Coal Gasifiers for Production of Synthetic Natural Gas (합성천연가스(SNG) 생산을 위한 석탄가스화기 기술성 검토)

  • Lee, Geun-Woo;Shin, Yong-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.865-871
    • /
    • 2012
  • Because of the increasing cost of oil and natural gas, energy production technologies using coal, including synthetic natural gas (SNG) and integrated gasification combined cycle (IGCC), have attracted attention because of the relatively low cost of coal. During the early stage of a project, the developer or project owner has many options with regard to the selection of a gasifier. In particular, from the viewpoint of feasibility, the gasifier is a key factor in the economic evaluation. This study compares the technical aspects of gasifiers for a real SNG production project in an early stage. A fixed-bed slagging gasifier, wet-type entrained gasifier, and dry-type entrained gasifier, all of which have specific advantages, can be used for the SNG production project. Base on a comparison of the process descriptions and performances of each gasifier, this study presents a selection guideline for a gasifier for an SNG production project that will be beneficial to project developers and EPC (Engineering, Procurement, Construction) contractors.

Change in compressive strength of lightweight geopolymers after immersion (침지 후 경량 지오폴리머의 압축강도 변화)

  • Kim, Hakmin;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.174-181
    • /
    • 2021
  • Lightweight geopolymers were fabricated by using IGCC (integrated gasification combined cycle) slag and Si sludge which are classified as general wastes (recyclable resources). Three curing methods were tried to investigate the changes in compressive strength and density according to the curing method and immersion time. Immersion period was tried up to 21 days to observe long-term performance in water. Compressive strength of the specimens cured in oven decreased abruptly with an increase in immersion time. Compressive strength of the specimen cured in autoclave was low after 3 and 7 day immersion; however, increased rapidly after 21 day immersion. On the contrary, compressive strength of the specimen cured in autoclave and oven was high but substantially decreased after 21 day immersion. Conclusively, it was speculated that oven curing is effective for the compressive strength development at early age; however, autoclave curing is more desirable for the long-term performance in water.

A Study on the H??S Removal with Utilization of Seashell Waste(II) - The Characteristics of Sulfided Reaction Using Fixed Bed Reactor- (패각 폐기물을 이용한 $H_2S$ 제거에 관한 연구(II) -고정층 반응기를 이용한 황화반응특성)

  • 김영식
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.86-90
    • /
    • 2003
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove H$_2$S. Fixed bed desulfurization experiments, to obtain basic data for scale-up was indicated. Oyster was the best among the various sorbents, like the results of TGA. Especially, H$_2$S removal efficiency of uncalcined oyster was the highest. When use oyster as desulfurization sorbents, calcination process was not needed. Thus, high desulfurization efficiency would be expected. Fixed bed reactor experiments were indicated particle size of sorbents. These had influenced on desulfurization capacity. As smaller particle size was found better desulfurization capacity. Large capacity difference was found between 0.613 mm and 0.335 mm. But, differences between 0.335 mm and 0.241 mm was relatively small. As bed temperature increased, H$_2$S removal capacity increased. Therefore, both particle size and bed temperature should be considered to remove H$_2$S by sorbents.

A Study of Regeneration Reaction for Desulfurization Sorbents using Natural Manganese Ore (천연 망간 광석 탈황제의 재생 반응 특성 연구)

  • 윤여일;윤용승;김성현
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.247-253
    • /
    • 2002
  • Natural manganese ore was selected as main active component for a non-zinc desulfurization sorbent used in the gas clean-up process of the integrated gasification combined cycle (IGCC) because of excellent H$_2$S removal efficiency and economical aspect . In this study, the regeneration characteristics of sorbent after desulfurization reaction were determined in a thermobalance reactor and a fixed bed reactor in the temperature range of 350~55$0^{\circ}C$. The mixed gases of oxygen and nitrogen are used as the regeneration reaction gases for manganese sorbent. According to Mn-S-O phase diagram, the manganese sorbent has a low regeneration efficiency in medium temperature due to formation of MnSO$_4$ and the regeneration temperature must be over 85$0^{\circ}C$. To improve that problem, ammonia and steam was added in regeneration mixed gases. Effect of new regeneration method was determined by XRD and difference of desulfurization through multicycle tests.

Physical Properties and Sulfur Absorption Capacity of Spray-dried Solid Sorbents for Desulfurization of Syngas (합성가스 중 $H_2S$ 정제용 탈황제의 물성 및 반응특성)

  • Baek, Jeom-In;Lee, Joong-Beom;Kim, Ji-Woong;Eom, Tae-Hyoung;Ryu, Jeong-Ho;Jeon, Won-Sik;Ryu, Chong-Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.880-883
    • /
    • 2009
  • 석탄가스화복합발전(IGCC) 시스템에서 합성가스 중에 포함된 황화수소($H_2S$)는 후단의 가스 터빈과 같은 장치의 부식을 방지하고, 합성가스를 이용하는 연료전지 등의 연계 공정에서 요구하는 수준에 맞추어 정제되어야 한다. 본 연구에서는 $H_2S$ 정제공정 추가에 따른 IGCC 시스템의 효율저하를 최소화하기 위하여 고온고압에서 사용가능한 탈황제를 분무건조법을 이용하여 제조하고 제조된 탈황제에 대해 물성 및 황 흡수능 시험을 실시하였다. 형상, 내마모도, 평균입자크기, 충진밀도와 함께 제조된 탈황제가 적용되는 유동층 공정에 적합한 강도를 보유하는지 여부를 미국표준시험방법에 의하여 측정하였다. 황 흡수능은 열중량분석기를 반응기로 사용하여 모사 합성 가스 분위기에서 측정하였다. 분무건조 성형된 탈황제의 일부가 구형이 아닌 타원형 또는 도넛 형태를 나타내고 있어 형상 개선을 위한 제조방법 개선이 필요한 것으로 나타났다. 제조된 탈황제는 기공도가 65% 이상으로 macropore가 기공부피의 대부분을, mesopore가 비표면적의 대부분을 제공하고 있었다. 소성온도를 650 $^{\circ}C$에서 750 $^{\circ}C$로 증가시킴에 따라 대체로 강도가 감소하는 경향을 나타내었다. 열중량분석기로 측정된 황 흡수능은 약 10 wt%로 나타났다. 제조된 탈황제 중 일부는 유동층 공정에 적합한 물성을 보유하고 있었으며 반응성 또한 기존에 개발된 탈황제에 버금가는 성능을 나타내어 향후 공정 적용이 가능할 것으로 분석되었다.

  • PDF

Fabrication and Properties of Reaction Bonded SiC Hot Gas Filter Using Si Melt Infiltration Method (용융 Si 침윤방법에 의한 반응소결 탄화규소 고온가스 필터의 제조 및 특성)

  • 황성식;김태우
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.891-896
    • /
    • 2003
  • Novel fabrication technique was developed for high strength Reaction-Bonded SiC (RBSC) hot gas filter for use in IGCC (Integrated Gasification Combined Cycle) system. The room and high temperature fracture strengths for Si-melt infiltrated reaction-bonded SiC were 50-123, and 60-66 MPa, respectively. The average pore size was 60-70 $\mu\textrm{m}$ and the porosity was about 34 vol%. RBSC infiltrated with molten silicon showed improved fracture strength at high temperature, as compared to that of clay-bonded SiC, due to SiC/Si phase present within SiC phase. The thickness for SiC/Si phase was increased with increasing powder particle size of SiC from 10 to 34 $\mu\textrm{m}$. Pressure drop with dust particles showed similar response as compared to that for Schumacher type 20 filter. The filter fabricated in the present study showed good performance in that the filtered powder size was reduced drastically to below 1 $\mu\textrm{m}$ within 4 min.

Effects of pre-curing process on improvement of the compressive strength of IGCC-slag-based-geopolymer (IGCC 용융 슬래그로 제조된 지오폴리머의 강도증진에 Pre-curing이 미치는 영향)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.295-302
    • /
    • 2017
  • In this study, the effect of pre-curing process on the enhancement of mechanical properties of IGCC-slag-based-geopolymer was studied. Pre-curing is a process in which the green geopolymer is left at room temperature for a certain period of time prior to the high-temperature curing, and it is known as increasing the strength of a specimen. Therefore, in this experiment, the compressive strength of the geopolymers was measured according to various pre-curing conditions, and microstructure and crystal phase changes were observed by SEM and XRD, respectively. The W/S ratio was determined to be 0.26, which can offer the maximum geopolymer strength with easy molding ability, and the concentration of the alkali solution was 15 M. Pre-curing was performed at room temperature for 0 to 27 days. Compressive strength of the geopolymer made with pre-curing process increased by 36~87 % compared with the specimens made with no pre-curing process. Those improved compressive strength for the pre-cured geopolymer was confirmed owing to promotion effect of pre-curing process on generation of C-S-H gel and zeolite phases, which were analyzed using by XRD and SEM measurement.