• Title/Summary/Keyword: Integrated Coupling Method

Search Result 81, Processing Time 0.024 seconds

Integrated Auto-Tuning of a Multi-Axis Cross-Coupling Control System (다축 연동제어 시스템에 대한 통합형 자율동조)

  • Lee, Hak-Chul;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.55-61
    • /
    • 2009
  • Machining systems have been evolved to produce more detailed products of high added value. This has been possible, in large part, due to the development of highly accurate multi-axis CNC machine tools. The conventional CNC of machine tools has individual axis controllers to maximize tracking performance. On the other hand, cross-coupling controllers can be integrated into the conventional CNC to enhance contouring performance. For this multi-axis cross-coupling control system, it is necessary to automatically adjust the controller gains depending on operating conditions and/or other external conditions from an optimization perspective. This paper proposes automatic modeling of feed drive systems that minimizes the difference in behavior between the system model and the actual system. Based on the modeling, an integrated auto-tuning method is also proposed to improve both tracking and contouring accuracy of a 3-axis cross-coupling control system as well as users' convenience. The proposed methods are evaluated by both simulation and experiments.

Optimization of Optical Coupling Properties of Active-Passive Butt Joint Structure in InP-Based Ridge Waveguide (InP계 리지 도파로 구조에서 활성층-수동층 버트 조인트의 광결합 효율 최적화 연구)

  • Song, Yeon Su;Myeong, Gi-Hwan;Kim, In;Yu, Joon Sang;Ryu, Sang-Wan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • Integration of active and passive waveguides is an essential component of the photonic integrated circuit and its elements. Butt joint is one of the important technologies to accomplish it with significant advantages. However, it suffers from high optical loss at the butt joint junction and need of accurate process control to align both waveguides. In this study, we used beam propagation method to simulate an integrated device composed of a laser diode and spot size converter (SSC). Two SSCs with different mode properties were combined with laser waveguide and optical coupling efficiency was simulated. The SSC with larger near field mode showed lower coupling efficiency, however its far field pattern was narrower and more symmetric. Tapered passive waveguide was utilized for enhancing the coupling efficiency and tolerance of waveguide offset at the butt joint without degrading the far field pattern. With this technique, high optical coupling efficiency of 89.6% with narrow far field divergence angle of 16°×16° was obtained.

Integrated Optimal Design of Smart Connective Control System and Connected Buildings (스마트 연결 제어 시스템과 연결 구조물의 통합 최적 설계)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • A smart connective control system was invented recently for coupling control of adjacent buildings. Previous studies on this topic focused on development of control algorithm for the smart connective control system and design method of control device. Usually, a smart control devices are applied to building structures after structural design. However, because structural characteristics of building structure with control devices changes, a iterative design is required for optimal design. To defeat this problem, an integrated optimal design method for a smart connective control system and connected buildings was proposed. For this purpose, an artificial seismic load was generated for control performance evaluation of the smart coupling control system. 20-story and 12-story adjacent buildings were used as example structures and an MR (magnetorheological) damper was used as a smart control device to connect adjacent two buildings. NSGA-II was used for multi-objective integrated optimization of structure-smart control device. Numerical simulation results show the integrated optimal design method proposed in this study can provide various optimal designs for smart connective control system and connected buildings presenting good control performance.

Virtual Flutter Test of a Spanwise Curved Wing Using CFD/CSD Integrated Coupling Method (CFD/CSD 통합 연계기법을 이용한 횡방향 곡률이 있는 날개의 가상 플러터 시험)

  • Oh, Se-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.355-365
    • /
    • 2006
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved ing model have been effectively conducted using the present advanced computational method with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data file to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

A Comparative Study on Coupling of Element-free Galerkin Method and Infinite Element by IE's Shape Function (무한요소 형상함수에 따른 무요소법과의 조합 방법 비교 연구)

  • 이상호;김명원;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.279-287
    • /
    • 2003
  • This paper deals with a comparative study on coupling of Element-free Galerkin(EFG) method and Infinite Element(IE) by IE's shape function. In this study, mapped infinite elements(mapped IE) and decay function infinite elements(decay IE) are coupled with the EFG method. A coupling procedure of EFG-Mapped IE is much easier to be integrated than a coupled EFG-Decay IE. A coupled EFG-IE method used well-defined functions to preserve the continuity and linear consistency on the interface of the EFG region and IE region. Several benchmark problems are solved to verify the effectiveness and accuracy of the coupling algorithms by IE's shape function. The numerical results show that the developed algorithms work well for the elastic problems with infinite boundaries.

  • PDF

3-Axis Coupling Controller for High-Precision/High-Speed Contour Machining (고정밀 고속 윤곽가공을 위한 3축 연동제어기)

  • 지성철;구태훈
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.40-47
    • /
    • 2004
  • This paper proposes a three-axis coupling controller designed to improve the contouring accuracy in machining of 3D nonlinear contours. The proposed coupling controller is based on an innovative 3D contour error model and a PID control law. The novel contour error model provides almost exact calculation of contour errors in real-time for arbitrary contours and can be integrated with any type of existing interpolator. In the proposed method, three axes of motion are coordinated by the proposed coupling controller along with a proportional controller for each axis. The proposed contour error model and coupling controller are evaluated through computer simulations. The simulation results show that the proposed 3-axis coupling controller with the new contour error model substantially can improve the contouring accuracy by order of magnitude compared with the existing uncoupled controllers in high-speed machining of nonlinear contours.

A modified multidisciplinary feasible formulation for MDO using integrated coupled approximate models

  • Choi, Eun-Ho;Cho, Jin-Rae;Lim, O-Kaung
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.205-220
    • /
    • 2014
  • This paper is concerned with the modification of multidisciplinary feasible formulation for MDO problems using the integrated coupled approximate models. A drawback of conventional MDFs is the numerical difficulty in decomposing the design variables and deriving the coupled equations of state. To overcome such a drawback of conventional methods, the coupling in analysis and design is resolved by approximating the state variables in each discipline by the response surface method and by modifying the optimization formulation using the corresponding integrated coupled approximate models. The validity, reliability and effectiveness of the proposed method are illustrated and verified through two optimization problems, a mathematical MDF problem and the multidisciplinary optimum design of suspension unit of wheeled armored vehicle.

Thermal Analysis of High Density Permanent Magnet Synchronous Motor Based on Multi Physical Domain Coupling Simulation

  • Chen, ShiJun;Zhang, Qi;He, Biao;Huang, SuRong;Hui, Dou-Dou
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • In order to meet the thermal performance analysis accuracy requirements of high density permanent magnet synchronous motor (PMSM), a method of multi physical domain coupling thermal analysis based on control circuit, electromagnetic and thermal is presented. The circuit, electromagnetic, fluid, temperature and other physical domain are integrated and the temperature rise calculation method that considers the harmonic loss on the frequency conversion control as well as the loss non-uniformly distributed and directly mapped to the temperature field is closer to the actual situation. The key is to obtain the motor parameters, the realization of the vector control circuit and the accurate calculation and mapping of the loss. Taking a 48 slots 8 poles high density PMSM as an example, the temperature rise distribution of the key components is simulated, and the experimental platform is built. The temperature of the key components of the prototype machine is tested, which is in agreement with the simulation results. The validity and accuracy of the multi physical domain coupling thermal analysis method are verified.

Integrated Roil-Pitch-Yaw Autopilot Design for Missiles

  • Kim, Yoon-Hwan;Won, Dae-Yeon;Kim, Tae-Hun;Tahk, Min-Jea;Jun, Byung-Eul;Lee, Jin-Ik;An, Jo-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.129-136
    • /
    • 2008
  • An roll-pitch-yaw integrated autopilot for missiles is designed for compensation of dynamics coupling. The proposed autopilot is based on the classical control technique. The gains of the proposed autopilot are optimized by using co-evolutionary augmented Lagrangian method(CEALM). Several cost functions are compared in order to find feasible control gains. For a case that a bank angle of missiles is unknown, multiple models are used in the autopilot optimization. In nonlinear simulations as well as linear simulations, the proposed autopilot provided good performances.

Boundary condition coupling methods and its application to BOP-integrated transient simulation of SMART

  • Jongin Yang;Hong Hyun Son;Yong Jae Lee;Doyoung Shin;Taejin Kim;Seong Soo Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1974-1987
    • /
    • 2023
  • The load-following operation of small modular reactors (SMRs) requires accurate prediction of transient behaviors that can occur in the balance of plants (BOP) and the nuclear steam supply system (NSSS). However, 1-D thermal-hydraulics analysis codes developed for safety and performance analysis have conventionally excluded the BOP from the simulation by assuming ideal boundary conditions for the main steam and feed water (MS/FW) systems, i.e., an open loop. In this study, we introduced a lumped model of BOP fluid system and coupled it with NSSS without any ideal boundary conditions, i.e., in a closed loop. Various methods for coupling boundary conditions at MS/FW were tested to validate their combination in terms of minimizing numerical instability, which mainly arises from the coupled boundaries. The method exhibiting the best performance was selected and applied to a transient simulation of an integrated NSSS and BOP system of a SMART. For a transient event with core power change of 100-20-100%, the simulation exhibited numerical stability throughout the system without any significant perturbation of thermal-hydraulic parameters. Thus, the introduced boundary-condition coupling method and BOP fluid system model can expectedly be employed for the transient simulation and performance analysis of SMRs requiring daily load-following operations.