• Title/Summary/Keyword: Integral observer

Search Result 122, Processing Time 0.025 seconds

Robust Current Estimation of DC/DC Boost Converter against Load Variation (부하변동에 강인한 DC/DC 승압 컨버터의 잔류 추정)

  • Kim, In-Hyuk;Jeong, Goo-Jong;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2038-2040
    • /
    • 2009
  • This paper studies the state estimation problem for the current of DC/DC boost converters with parasitic inductor resistance. The parasitic resistance increases the system uncertainty when the output load variation occurs. In order to enhance the observation performance of the Luenberger observer this paper includes the integral of the estimation error signal to the estimation algorithm. By using the proposed PI observer the converter current signal is successfully reconstructed with the voltage measurement regardless of the load uncertainty. Computer simulation has been carried out by using Simulink/Sim Power System. Simulation results show the proposed method maintains robust estimation performance against the model uncertainty.

Incremental Passivity Based Control for DC-DC Boost Converters under Time-Varying Disturbances via a Generalized Proportional Integral Observer

  • He, Wei;Li, Shihua;Yang, Jun;Wang, Zuo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.147-159
    • /
    • 2018
  • In this paper, the voltage tracking control of a conventional DC-DC boost converter affected by unknown, time-varying circuit parameter perturbations is investigated. Based on the fundamental property of incremental passivity, a passivity based control law is designed. Then, to obtain a better disturbance rejection property, two generalized proportional integral (GPI) observers are employed to estimate the time-varying uncertainties in the output voltage and inductor current channels, and the estimated values are applied as feedforward compensation. Moreover, the global trajectory tracking performance of a system with disturbances is ensured under the composite controller. Finally, simulation and experiment studies are provided to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed controller delivers a promising disturbance rejection capability as well as a good nominal tracking performance.

Robust Tracking and Human-Compliance Control Using Integral SMC and DOB (적분슬라이딩모드와 DOB를 이용한 강인추종 및 인간순응 로봇제어)

  • Asignacion Jr., Abner;Kim, Min-chan;Kwak, Gun-Pyong;Park, Seung-kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.416-422
    • /
    • 2017
  • The robot control with safety consideration is required since robots and human work together in the same space more frequently in these days. For safety, robots must have compliance to human force and robust tracking performance with high impednace for the nonhuman disturbances. The novel idea is proposed to achieve the compliance and high impedance with one controller structure. For the compliance, the ISMC(Integral Sliding Mode Control) and HDOB(Human Disturbance Observer) The human force is identified by using the human band pass filter and its output is sent to the sliding surface. The sliding mode dynamic is affected by human disturbance and the compliance for human is achieved. The disturbances besides human frequencies are decoupled by the ISMC and the robust tracking is achieved. The additional LDOB(Low Frequency Disturbance Observer) decreases the maxim nonlinear gain and leads low chattering. The introduction of human disturbance into the sliding mode dynamic is the main novel idea of this paper.

Torque Ripple Suppression Method for BLDCM Drive Based on Four-Switch Three-Phase Inverter

  • Pan, Lei;Sun, Hexu;Wang, Beibei;Su, Gang;Wang, Xiuli;Peng, Guili
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.974-986
    • /
    • 2015
  • A novel inverter fault-tolerant control scheme is proposed to drive brushless DC motor. A fault-tolerant inverter and its three fault-tolerant schemes (i.e., phase A fault-tolerant, phase B fault-tolerant, and phase C fault-tolerant) are analyzed. Eight voltage vectors are summarized and a voltage vector selection table is used in the control scheme to improve the midpoint current of the split capacitors. A stator flux observer is proposed. The observer can improve flux estimation, which does not require any speed adaptation mechanism and is immune to speed estimation error. Global stability of the flux observer is guaranteed by the Lyapunov stability analysis. A novel stator resistance estimator is incorporated into the sensorless drive to compensate for the effects of stator resistance variation. DC offset effects are mitigated by introducing an integral component in the observer gains. Finally, a control system based on the control scheme is established. Simulation and experiment results show that the method is correct and feasible.

Monitoring System Design for Estimating Lateral Velocity and Sideslip Angle (감지시스템을 통한 차량의 횡 속도 및 슬립각 추정)

  • Han, Sang-Oh;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • Information of the lateral velocity and the sideslip angle in a vehicle is very useful in many active vehicle safety applications such as yaw stability control and rollover prevention. Because cost-effective sensors to measure the lateral velocity and the sideslip angle are not available, reliable algorithms to estimation them are necessary. In this paper, a sliding mode observer is designed to estimate the lateral velocity. The side slip angle is estimated using the recursive least square with the disturbance observer and the pseudo integral. The estimated parameters from the combined estimation method are updated recursively to minimize the discrepancy between the model and the physical plant, and any possible effects caused by disturbances. The performance of the proposed monitoring system is evaluated through simulations and experiments.

Image-Based Robust Output Feedback Control of Robot Manipulators using High-Gain Observer (고이득 관측기를 이용한 영상기반 로봇 매니퓰레이터의 출력궤환 강인제어)

  • Jeon, Yeong-Beom;Jang, Ki-Dong;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.731-737
    • /
    • 2013
  • In this paper, we propose an image-based output feedback robust controller of robot manipulators which have bounded parametric uncertainty. The proposed controller contains an integral action and high-gain observer in order to improve steady state error of joint position and performance deterioration due to measurement errors of joint velocity. The stability of the closed-loop system is proved by Lyapunov approach. The performance of the proposed method is demonstrated by simulations on a 5-link robot manipulators with two degrees of freedom.

Design of Unknown-Input PI Observer and Realization of Exact LTR (미지입력 비례적분 관측기 설계와 완전 LTR의 실현)

  • ;S. KAWAJI
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.133-139
    • /
    • 1996
  • 전형적인 상태 관측기에서는, 외란이 시스템 입력에 가해지는 경우 시스템의 상태 추정이 불가능하다. 이러한 상태관측 문제에 대한 한가지 대책법으로서 비례적분(PI) 관측기가 제안되어 스텝외란의 소거에 대한 유효성이 밝혀져 로바스트 제어기 설계에 대한 응용으로서 널리 연구가 행해져 왔다. 그러나, 미지입력에 대한 PE 관측기 설계는 여전히 문제로 남아 있다. 이 논문에서는 미지입력 PI 관측기의 설계법을 제안하고, 이에 대한 응용으로서 완전 LTR을 실현할 수 있는 결과를 보인다. 먼저, 입력의 정보없이 시스템의 상태를 추정할 수 있는 미지입력 PI 관측기의 충분조건을 제안하고, PE 관측기의 설계에 요구되는 필요충분조건을 보인다. 이러한 조건은 완전 LTR의 실현을 위한 직접적인 요구조건임을 보인다. 따라서, 완전 LTR을 달성하면서 지정한 관측기의 극을 지니는 PI 관측기 설계가 가능하다.

  • PDF

Extended-State-Observer-Based Nonlinear Servo Control of An Electro-Hydrostatic Actuator (전기-정유압 구동기의 확장 상태 관측기 기반 비선형 서보 제어)

  • Jun, Gi Ho;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.61-70
    • /
    • 2017
  • In this study, an extended-state-observer (ESO) based non-linear servo control is introduced for an electro-hydrostatic actuator (EHA). Almost hydraulic systems not only are highly non-linear system that has mismatched uncertainties and external disturbances, but also can not measure some states. ESO that only use an output signal can be used to compensate these uncertainties and estimate unmeasurable states. To improve the position tracking performance, the barrier Lyapunov function (BLF) that can guarantee an output tolerance is introduced for the position tracking error signal of back stepping control procedures. Finally, the proposed servo control is compared with the proportional-integral (PI) control.

Robust Trajectory Tracking Control of Mecanum Wheeled AGV Using State Space Disturbance Observer Based Impedance Control and ISMC (상태 공간 외란관측기 기반의 임피던스 제어와 ISMC를 이용한 메카넘 휠 AGV의 강인 궤도 추적 제어)

  • Hyoseok Cheon;Seungkyu Park
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • Auto Guided Vehicle (AGV) equipped with mecanum wheels can move in all directions, unlike ordinary wheeled AGVs. In this paper, we propose a robust trejectory tracking control method for the mecanum wheeled AGVs in the presence of disturbances. It is constructed by combining impedance control with Integral Sliding Mode Control (ISMC), which shows robust performance against disturbances, and adding a disturbance observer (DOB) that estimates and removes disturbances. Simulation result using MATLAB/SIMULINK shows that the proposed control method has robust performance in tracking the reference trajectory under the circumstance with disturbance. The control performance is further improved when the disturbance observer is additionally used. In addition, the performance of the proposed control method was verified through experiment. It shows the result of tracking the set trajectory well.

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.