• Title/Summary/Keyword: Integral Field Unit

Search Result 27, Processing Time 0.026 seconds

KINEMATICAL PROPERTIES OF PLANETARY NEBULAE WITH WR-TYPE NUCLEI

  • DANEHKAR, ASHKBIZ;STEFFEN, WOLFGANG;PARKER, QUENTIN A.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.163-167
    • /
    • 2015
  • We have carried out integral field unit (IFU) spectroscopy of $H{\alpha}$, [$N{\small{II}}$] and [$O{\small{III}}$] emission lines for a sample of Galactic planetary nebulae (PNe) with Wolf-Rayet (WR) stars and weak emission-line stars (wels). Comparing their spatially-resolved kinematic observations with morpho-kinematic models allowed us to disentangle their three-dimensional gaseous structures. Our results indicate that these PNe have axisymmetric morphologies, either bipolar or elliptical. In many cases the associated kinematic maps for the PNe around hot central stars also reveal the presence of so-called fast low-ionization emission regions.

The extended narrow-line region kinematics of 3 Type-2 QSOs revealed by the VLTVIMOS IFU spectra

  • Cho, Hojin;Woo, Jonghak;Bennert, Vardha N.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.88.2-88.2
    • /
    • 2012
  • We present kinematic properties of the narrow-line region in three type-2 QSOs at z~0.35, using 2-D spectra obtained with the VIMOS integral field unit spectrograph at the Very Large Telescope. One of the objects shows a line-of-sight velocity shift of the [OIII] and $H{\beta}$ lines up to 40km/s on a 15 kpc scale, which can be interpreted as either outflow or rotation. The outflow scenario is supported by the presence of blue wings and a radio structure showing lobes in the same direction. Another object features double-peaked emission lines which can be decomposed into two velocity components. Its Hubble Space Telescope image shows two nuclei separated by ~0.2"(~1kpc), implying this may be a binary AGN.

  • PDF

WEAKLY KRULL AND RELATED PULLBACK DOMAINS

  • Chang, Gyu-Whan
    • The Pure and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.117-125
    • /
    • 2004
  • Let T be an integral domain, M a nonzero maximal ideal of T, K = T/M, $\psi$: T \longrightarrow K the canonical map, D a proper subring of K, and R = $\psi^{-1}$(D) the pullback domain. Assume that for each $x \; \in T$, there is a $u \; \in T$ such that u is a unit in T and $ux \; \in R$, . In this paper, we show that R is a weakly Krull domain (resp., GWFD, AWFD, WFD) if and only if htM = 1, D is a field, and T is a weakly Krull domain (resp., GWFD, AWFD, WFD).

  • PDF

GAS KINEMATICS AND PHOTOIONIZATION IN TYPE 1 AGNs WITH STRONG OUTFLOWS

  • KIM, CHANGSEOK;WOO, JONG-HAK;LUO, RONGXIN
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.61.3-61.3
    • /
    • 2020
  • We present spatially resolved outflows and photoionization for a pilot sample of 11 type 1 AGNs (z<0.3) based on the Gemini Multi-Object Spectrograph Integral Field Unit data. These AGNs were selected since we found strong outflow signatures in SDSS spectra. We focus on [OIII] and Hα emission lines to probe outflow kinematics by measuring line flux, velocity, and velocity dispersion at each pixel. We investigate characteristics of gas kinematics of type 1 AGNs and compare them with those of type 2 AGNs in our previous studies. Furthermore, by drawing BPT map, photoionization states will be also discussed. Based on the results, we discuss various implications on the impacts of outflows on star formation in host galaxies.

  • PDF

Merging, Recoiling, or Slingshotting of Supermassive Black Holes in a Red AGN 1659+1834

  • Kim, Dohyeong;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2021
  • We report the Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (IFU) observation of a red active galactic nucleus (AGN), 2MASSJ165939.7+183436 (1659+1834). 1659+1834 is a prospective merging supermassive black hole (SMBH) candidate due to its merging features and double-peaked broad emission lines. The double-peaked broad emission lines are kinematically separated by 3000 km/s, with the SMBH of each component weighing at 10^8.9 and 10^7.1 solar mass. Our GMOS IFU observation reveals that the two components of the double-peaked broad emission line are spatially separated by 0.085" (~250pc). In different assumptions for the line fitting, however, a null (<0.05") or a larger spatial separation (~0.15") are also possible. For this GMOS IFU observational results of 1659+1834, various models can be viable solutions, such as the disk emitter and multiple SMBH models. We believe that these results show the need for future research of finding more multiple SMBH systems in red AGNs.

  • PDF

Aerodynamic noise reduction of fan motor unit of cordless vacuum cleaner by optimal designing of splitter blades for impeller (임펠라 스플리터 날개 최적 설계를 통한 무선진공청소기 팬 모터 단품의 공력 소음 저감)

  • Kim, Kunwoo;Ryu, Seo-Yoon;Cheong, Cheolung;Seo, Seongjin;Jang, Cheolmin;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.524-532
    • /
    • 2020
  • In this study, noise radiated from a high-speed fan-motor unit for a cordless vacuum cleaner is reduced by designing splitter blades on the existing impeller. First of all, in order to investigate the flow field through a fan-motor unit, especially impeller, the unsteady incompressible Reynolds-Averaged Navier-Stokes (RANS) equations are numerically solved by using computational fluid dynamic technique. With predicted flow field results as input, the Ffowcs Williams-Hawkings (FW-H) integral equation is solved to predict aerodynamic noise radiated from the impeller. The validity of the numerical methods is confirmed by comparing the predicted sound pressure spectrum with the measured one. Further analysis of the predicted flow field shows that the strong vortex is formed between the impeller blades. As the vortex induces the loss of the flow field and acts as an aerodynamic noise source, supplementary splitter blades are designed to the existing impeller to suppress the identified vortex. The length and position of splitter are selected as design factors and the effect of each design factor on aerodynamic noise is numerically analyzed by using the Taguchi method. From this results, the optimum location and length of splitter for minimum radiated noise is determined. The finally selected design shows lower noise than the existing one.

Performance Improvement of an INS by using a Magnetometer with Pedestrian Dynamic Constraints

  • Woyano, Feyissa;Park, Aangjoon;Lee, Soyeon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This paper proposes to improve the performance of a strap down inertial navigation system using a foot-mounted low-cost inertial measurement unit/magnetometer by configuring an attitude and heading reference system. To track position accurately and for attitude estimations, considering different dynamic constraints, magnetic measurement and a zero velocity update technique is used. A conventional strap down method based on integrating angular rate to determine attitude will inevitably induce long-term drift, while magnetometers are subject to short-term orientation errors. To eliminate this accumulative error, and thus, use the navigation system for a long-duration mission, a hybrid configuration by integrating a miniature micro electromechanical system (MEMS)-based attitude and heading detector with the conventional navigation system is proposed in this paper. The attitude and heading detector is composed of three-axis MEMS accelerometers and three-axis MEMS magnetometers. With an absolute algorithm based on gravity and Earth's magnetic field, rather than an integral algorithm, the attitude detector can obtain an absolute attitude and heading estimation without drift errors, so it can be used to adjust the attitude and orientation of the strap down system. Finally, we verify (by both formula analysis and from test results) that the accumulative errors are effectively eliminated via this hybrid scheme.

A Study of Environmental Effects on Galaxy Spin Using MaNGA Data

  • Lee, Jong Chul;Hwang, Ho Seong;Chung, Haeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.47.2-47.2
    • /
    • 2017
  • We investigate the environmental effects on galaxy spin using the sample of ~1100 galaxies from the first public data of MaNGA integral field unit survey. We determine the spin parameter ${\lambda}_{Re}$ of galaxies by analyzing the two-dimensional stellar kinematic measurements within the effective radius, and study its dependence on the large-scale (background mass density determined with 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbor galaxy) environments. We first examine the mass dependence of galaxy spin, and find that the spin parameter decreases with stellar mass at log ($M_{\ast}/M_{\odot}$) > 10, consistent with previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameter of galaxies in each subsample does not change with the background density, but do change with the distance to and morphology of the nearest neighbor. The spin parameter increases when late-type neighbors are within the virial radius, and decreases when early-type neighbors are within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the effects of small-scale environments such as hydrodynamic galaxy-galaxy interactions are substantial.

  • PDF

Merger Induced Kinematic Anomalies in Abell 119

  • Oh, Sree;Jeong, Hyunjin;Sheen, Yun-Kyeong;Croom, Scott;Yi, Sukyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2016
  • Galaxy clusters are the sites where the most massive galaxies are found, and so the most dramatic merger histories are embedded. Our deep (mu ~ 28 mag/arcsec^2) images of Abell 119 at z = 0.044 using the Blanco 4-m telescope at CTIO revealed post-merger signatures in ~35% of galaxies brighter than Mr < -19.5, suggesting that so many galaxies even in clusters have gone through galaxy mergers at recent epoch. We went further to understand the impact of mergers in cluster galaxies using stellar kinematics from the SAMI Integral Field Unit on the galaxies of Abell 119 in three aspects of kinematics : orientations, levels of rotation, and kinematic shapes. We found that 30% of the merger-featured galaxies show misalignment in the angle between the photometric major and the rotation axes, and most of them show complex kinematics. For comparison, only 5% of non-merger-featured galaxies show the misalignment. Moreover, our analysis using the Tully-Fisher relation shows that galaxy interactions can both enhance or reduce galaxy spin depending on the merger geometry. We present our preliminary result and discussion on the role of galaxy mergers in cluster environment from the perspective of kinematics.

  • PDF

Numerical investigation into cavitation flow noise of hydrofoil using quadrupole-corrected Ffowcs Williams and Hawkings equation (사중극자 보정 Ffowcs Williams and Hawkings 방정식을 이용한 수중 익형 공동 유동소음에 대한 수치적 고찰)

  • Ku, Garam;Ryu, Seo-Yoon;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.263-270
    • /
    • 2018
  • In most industry fields concerning external flow noise problems, the hybrid computational aeroacoustic techniques based on the FW-H (Ffowcs Williams and Hawkings) equation are widely used for its numerical efficiency. However, when the surface integral form of FW-H equation is used without volume quadrupole sources, it is known to generate significant non-physical noise in a certain case. Especially, in the case of a flow in which the tip vortex cavitation is formed in the distant downstream direction such as flow driven by an underwater propeller, the accuracy in noise prediction becomes poor unless it is not properly modelled. Therefore, in this study, the nonphysical acoustic waves caused by the surface integral form of FW-H equation is reduced by adding the quadrupole correction term. First, to verify the accuracy of the in-house code of FW-H equation, the noise by an axial fan used in the outdoor unit of air conditioner was calculated and compared with the results of ANSYS Fluent. In order to verify the effects of the quadrupole correction term, the noise prediction for isentropic vortex convection is performed and it is confirmed that the error is reduced by the quadrupole correction term. Finally, the noise prediction is performed for the flow field generated by the Clark-Y hydrofoil in underwater. It is confirmed that the error caused by the cavitation passing through the integral surface can be reduced by the quadrupole correction term.