• Title/Summary/Keyword: Integral Equation

Search Result 1,028, Processing Time 0.031 seconds

Integral Method of Stability Analysis and Maintenance of Slope (비탈면 안정해석과 유지관리의 통합해석기법)

  • Park, Mincheol;Yoo, Byeongok;Baek, Yong;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.27-35
    • /
    • 2016
  • Even if the various data analyzing methods were suggested to examine the measured slope behaviors, it is difficult to find methods or procedures for connecting the analyzed results of slope stability and measured slope data. This research suggests the analyzing methods combing the stability analysis and measured data based on progressive failure of slope. Slope failure analysis by time degradation were calculated by strength parameters composed of strength reduction coefficients, also which were compared to the measured data according to the variations of safety factor and displacement of slopes. The accumulated displacement curve were shown as 3rd degree polynomials by suggested procedures, which was the same as before researches. The reverse displacement velocity curves were shown as linear function for prediction of brittle slope failures, also they were shown as 3rd degree polynomials for ductile slope failures, which were the same as the suggested equation by Fukuzono (1985) and they were very similar behaviors to the in-situ failure cases.

A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments

  • Elmascri, Setti;Bessaim, Aicha;Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Mohamed, Sekkal;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • This paper presents a new hyperbolic shear deformation plate theory including the stretching effect for free vibration of the simply supported functionally graded plates in thermal environments. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present one has a new displacement field which introduces undetermined integral variables. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume power laws of the constituents. The equation of motion of the vibrated plate obtained via the classical Hamilton's principle and solved using Navier's steps. The accuracy of the proposed solution is checked by comparing the present results with those available in existing literature. The effects of the temperature field, volume fraction index of functionally graded material, side-to-thickness ratio on free vibration responses of the functionally graded plates are investigated. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect in thermal environments.

Shielding effectiveness of an Aperture in Infinite Conducting plane Due to HEMP Incidence (무한 도체평판 개구에 입사하는 HEMP 파형에 따른 침투 전자파의 차폐효과)

  • Lim, Byoung-Jin;Seo, Hun-Wook;Lim, Sung-Min;Kim, Ki-Chai
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1647-1652
    • /
    • 2011
  • This paper presents the shielding effectiveness for the IEC 61000-2-9 standard when HEMP source penetrates through an aperture in a planar conducting plane of infinite extent. An integral equation is derived and solved by applying Galerkin's method of moments for calculating the electric shielding effectiveness. The electric shielding effectiveness is examined based on changing the aperture length and width. It is shown that the electric shielding effectiveness is suddenly decreases as the aperture width of 0.4 ~ 0.45${\lambda}$. It is also found that the penetrated electric field for the IEC 61000-2-9 incident field is different from the Bell Laboratory incident field, but the frequency characteristic of the electric shielding effectiveness becomes the same shape.

Underwater Structure-Borne Noise Analysis Using Finite Element/Boundary Element Coupled Approach (유한요소/경계요소 연성해석을 통한 수중 구조기인소음 해석)

  • Lee, Doo-Ho;Kim, Hyun-Sil;Kim, Bong-Ki;Lee, Seong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.789-796
    • /
    • 2012
  • Radiated noise analysis from a ship structure is a challenging topic owing to difficulties in the accurate calculation of the fluid-structure interaction as well as owing to a massive degree of freedom of the problem. To reduce the severity of the problem, a new fluid-structure interaction formulation is proposed in this paper. The complex frequency-dependent added mass and damping matrices are calculated using the high-order Burton-Miller boundary integral equation formulation to obtain accurate values over all frequency bands. The calculated fluid-structure interaction effects are added to the structural matrices calculated by commercial finite element software, MSC/NASTRAN. Then, the impedance and underwater radiation noise due to an excitation of structure are calculated. The present formulation is applied to a ship to calculate the underwater radiated noise.

Wave Energy Absorption Efficiency of Pneumatic Chamber of OWC Wave Energy Converter (진동수주형 파력발전장치 공기실의 파력에너지 흡수효율)

  • Hong, Key-Yong;Shin, Seung-Ho;Hong, Do-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • Oscillating wave amplitude in a bottom-mounted OWC chamber designed for wave energy converter is investigated by applying characteristic wave conditions in Korean coastal water. The effects of shape parameters of OWC chamber in a view of wave energy absorbing capability are analyzed. Both experimental and numerical approaches are adopted and their results are compared to optimize the shape parameters which can result in a maximum power production under given wave distribution. The experiment was carried out in a wave flume under 2-D assumption of OWC chamber. The numerical scheme employed a hybrid Green integral equation which adopts the Rankine Green function inside chamber to take account of fluctuating air pressure, while it uses the Kelvin Green function in outer domain. Air duct diameter, chamber width, and submerged depths of front skirt and back wall of chamber changes the magnitude and peak frequency of wave absorption significantly.

  • PDF

Verification on the Calculated Geoelectric Field on Power Grid during Geomagnetic Disturbances (지자기 교란으로 인한 전력망 유도전기장 예상값 검증)

  • Park, Sung Won;Yoo, Chung-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.94-100
    • /
    • 2015
  • Coronal mass ejection (CME) released due to solar flare explosion cause geomagnetic disturbance. The induced current by massive geomagnetic disturbance can cause damage to the transformer. The calculated geoelectric field is a major parameter of the geomagnetically induced current (GIC). The method applying a Fourier transform has a high accuracy but it needs all data measured for 24 hours. And the other method applying a integral equation can calculate in real time but it requires to check an accuracy. To reduce the gap between the calculated results of two methods, it adjusts the integration section. As a result, the correlation between two calculated geoelectric fields is high, and the event time and direction of the calculated current is the same as that of the measured current, and it's accuracy rate is above 92 percent.

Far-Field Sound Field Estimation from Near-Field Sound Field Data Using Boundary Collocation Method ; Decision of Optimum Points of Measurement (경계 배치법(Boundary Collocation Method)에 의한 근거리 음장 자료로부터 원거리 음장의 예측 ; 최적 측정점 개수의 결정)

  • 김원호;윤종락
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.31-37
    • /
    • 1999
  • This paper describes the far-field estimation using the near-field measurement data. Measurement in far-field region gives us the acoustical characteristics of the source but in general measurement is made in near-field such as acoustic water tank or anechoic chamber, so far-field acoustical characteristics of the source should be predicted from near-field data. In this case, the number of measurement points in the near field which relates to the accuracy of the predicted field and the amount of data processing, should be optimized. Existing papers say that measurement points is proportional to kL and depends on geometry and directivity of the source. But they do not give us any definite criterion for the required number of measurement points. Boundary Collocation Method which is one of the far-field prediction methods, is analyzed based on Helmholtz integral equation and Green function and it has been found that the number of measurement points is optimized as 0.54kL which is about one half of the existing results.

  • PDF

The Phase Space Analysis of 3D Vector Fields (3차원 벡터 필드의 위상 공간 분석)

  • Jung, Il-Hong;Kim, Yong Soo
    • Journal of Digital Contents Society
    • /
    • v.16 no.6
    • /
    • pp.909-916
    • /
    • 2015
  • This paper presents a method to display the 3D vector fields by analyzing phase space. This method is based on the connections between ordinary differential equations and the topology of vector fields. The phase space analysis should be geometric interpolation of an autonomous system of equation in the form of the phase space. Every solution of it system of equations corresponds not to a curve in a space, but the motion of a point along the curve. This analysis is the basis of this paper. This new method is required to decompose the hexahedral cell into five or six tetrahedral cells for 3D vector fields. The critical points can be easily found by solving a simple linear system for each tetrahedron. The tangent curves can be integrated by finding the intersection points of an integral curve traced out by the general solution of each tetrahedron and plane containing a face of the tetrahedron.

Behavior of Oil-Water Interface between Tandem Fences (이중 유벽 사이의 기름과 물의 계면의 거동)

  • Kang Kwan Hyoung;Lee Choung Mook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.70-77
    • /
    • 1999
  • The disturbance of oil-water interface confined between tandem fences caused by a sequence of traveling vortices below the interface is investigated. The traveling vortices are assumed to be those detached from the tip of the fore fence. The potential flow is assumed and the density interface is replaced as a sheet of vortex. The shape of the interface is predicted by tracing a finite number of marker particles placed at the interface. The velocity of the marker particles is determined by the Biot-Savart integral along the vortex sheet plus the contribution from the traveling point vortices. The rate of change of vortex-sheet strength is predicted by using an evolution equation for vorticity. The calculated results obtained for various conditions demonstrate that the large amplitude of interfacial wave following the moving vortek can be generated by the vortices.

  • PDF

Super-Cavitating Flow Problems about Two-Dimensional Symmetric Strut (2차원 대칭 스트럿 주위의 초월 공동 유동 문제의 해석)

  • Y.G.,Kim;C.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.15-26
    • /
    • 1990
  • This paper describes a potential-baoed panel method formulated for the analysis cf a supercavitating two-dimensional symmetri strut. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring that the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type, With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lifting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged.

  • PDF