• Title/Summary/Keyword: Integral Control

Search Result 1,248, Processing Time 0.028 seconds

A Study on an Integral State Feedback Controller for Way-point Tracking of an AUV (무인잠수정의 적분 상태 궤환 제어기 설계 및 경유점 추적 연구)

  • Bae, Seol B.;Shin, Dong H.;Park, Sang H.;Joo, Moon G.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.661-666
    • /
    • 2013
  • A state feedback controller with integration of output error is proposed for way-point tracking of an AUV (Autonomous Underwater Vehicle). For the steering control on the XY plane, the proposed controller uses three state variables (sway velocity, yaw rate, heading angle) and the integral of the steering error, and for the depth control on the XZ plane, it uses four state variables (pitch rate, depth, pitch angle) and the integral of the depth error. From the simulation using Matlab/Simulink, we verify that the performance of the proposed controller is satisfactory within an error range of 1m from the target way-point for arbitrarily chosen sets of consecutive way-points.

Description of crack growth behavior of SB41 steel in terms of J integral (J적분에 의한 SB41강의 피로균열 진전 특성 평가)

  • 배원호;김상태;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1568-1575
    • /
    • 1990
  • Fatigue crack growth behavior was investigated in the center cracked plate of KS SB41 steel and the relation between the crack growth rate and various mechanical parameters was studied at small scale yielding, large scale yielding and full scale yielding. The crack opening ratio U was about 0.6-0.8 and had the larger value in the case of load control than that of strain control. Effective stress intensity factor range, .DELTA.K$_{eff}$ and J integral range, .DELTA.J were obtained from the notion of crack opening, and the crack growth rate was expressed with these values. The value of J integral range increased rapidly at stress ratio, R=0 in full scale yielding of load control test. COD value also increased rapidly with the increase of ligament net stress at large scale yielding of load control test.t.

PWM-Based Sliding Mode Controller for Three-Level Full-Bridge DC-DC Converter that Eliminates Static Output Voltage Error

  • Liu, Jilong;Xiao, Fei;Ma, Weiming;Fan, Xuexin;Chen, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.378-388
    • /
    • 2015
  • This paper proposes a pulse width modulation (PWM)-based sliding mode controller (SMC) for a full-bridge DC-DC converter that can eliminate static output voltage error. Hysteretic SMC in DC-DC converter does not have a fixed switching frequency, and applying hysteretic SMC to full-bridge converters is difficult. Fixed-frequency SMC, which is also called PWM-based SMC, based on equivalent control overcomes these shortcomings. However, the controller order reduction in equivalent control in PWM-based SMC causes static output voltage error. To resolve this issue, an integral item is added to the PWM-based SMC. Sliding mode coefficients are designed by applying a standard second-order system to the sliding mode surface. The effect of adding an integral item on the controller is analyzed, and an integral coefficient design method is proposed. Experiment results on a three-level full-bridge DC-DC converter verify the control scheme and design method proposed in this paper.

Linear Input/output Data-based Predictive Control with Integral Property

  • Song, In-Hyoup;Yoo, Kee-Youn;Park, Myung-Jung;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.5-101
    • /
    • 2001
  • A linear input/output data-based predictive control with integral action is developed. The control input is obtained directly from the input/output data in a single step. However, the state estimation in subspace identification gives a biased estimate and there is model mismatch when the controller is applied to a nonlinear process. To overcome such difficulties, we add integral action to a linear input/output data-based predictive controller by augmenting the integrated white noise disturbance model and use each of best linear unbiased estimation(BLUE) filter and Kalman filter as a stochastic observer for the unmeasured disturbance. When applied to a continuous styrene polymerization reactor the proposed controller demonstrates.

  • PDF

PID Control Method with Modified Integral Parameter (변형된 적분 파라미터를 가진 PID 제어방식)

  • 엄기환;강성호;이정훈
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.6
    • /
    • pp.11-16
    • /
    • 2004
  • The integral term of PID controller have the advantage of reduced steady state error and the disadvantage of accumulated errors. We proposed a method that maintains its advantage and improvs the disadvantage in transient response. The proposed PID control method with modified integral parameter accumulates errors in increment section and ignores errors in decrement section. Therefore, the proposed PID control method decreases overshoot, and makes settling time faster than conventional PID control method.

STABILITY ANALYSIS OF A CONTROL SYSTEM QITH AN ANTIRESET-WINDUP LIMITER BY LIAPUNOV'S SECOND METHOD

  • Yang, Sangsik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1289-1294
    • /
    • 1990
  • When a saturating control system has integral action, reset windup can cause instability as well as make the system performance unsatisfactory. An antirset-windup (ARW) limiter has been suggested to improve the stability and performance. It has been implemented with analog circuits and tested by simulations. This paper presents the stability condition of a double-integrator plant having the state feedback plus integral-action controller with the ARW limiter by using both Liapunov's second method and graphical method together.

  • PDF

Design of the Extended PID Self-Tuner (확장된 PID 자기동조기의 설계)

  • 金鍾煥;崔桂根
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.439-444
    • /
    • 1986
  • In this paper the PID-B self-tuner[1] is extended to allow a less abrupt response to set point or plant parameter changes and to control a nonminimum phase plant. The proposed extended PID/ST derived from the direct pole-placement PID/ST is obtained with the Bezout identity as the underlying design method. And its control gains are normalized by the integral control gain. Although the integral control gain is normalized to 1 in our scheme, the so-called "set point and derivative kick" can be avoided sufficiently by normalizing the measurement vector and set point.

  • PDF

A design of discrete-time integral controllers under skewed sampling

  • Ishihara, Tadashi;Guo, Hai-Jiao;Taketa-Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.428-433
    • /
    • 1993
  • First, we propose a transparent and efficient design of discrete-time integral controllers accounting sampling skew. Based on the proposed controller, we derive a state-space representation of doubly coprime factorization including integral action. The representation is then used to obtain a convenient state-space parametrization of discrete-time two-degree-of-freedom integral controllers acconting sampling skew.

  • PDF

A Study on the Prefilter to Protect Overshoot of Active Magnetic Bearing using Integral Type LQR-design Method (적분형 LQR 설계 기법을 이용한 능동자기베어링의 오버슈트 방지용 입력필터에 관한 연구)

  • Kang, Seong-Gu;Lee, Kee-Seok;Chung, Jun-Mo;Shin, Woo-Cheol;Hong, Jun-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • Active magnetic bearing has been adopted to support the rotor by electomagnetic force without mechanical contact and lubrication process. A property of the control system for magnetic bearing is improved in accordance with making higher system gain. If the control system has integral part, an excessive overshoot response is shown by making higher integral gain. Therefore, this paper suggests a PID control system in order to eliminate the overshoot at the first stage and improve response characteristics to an impact disturbance at the status of levitation. The control gain was obtained by LQR design method which has the structure of I-PD control system in the state space. The PID control system containing prefilter has the same structure as the I-PD control system. Therefore, the PID control system adopted is able to be tuned by LQR design method. Finally, this paper shows the effect of the prefilter on the active magnetic bearing system through response experiments for levitation responses.

A Speed Control of Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer without Speed and Position Sensors (적응적분바이너리 관측기를 이용한 위치 및 속도 센서없는 영구자석 동기전동기의 속도제어)

  • Lee, Joung-Hum;Choi, Yang-Kwang;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.83-85
    • /
    • 2003
  • This paper presents a speed control of permanent magnet synchronous motors (PMSM) using an adaptive integral binary observer without speed and position sensors. In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. In order to improve the steady state performance of the binary observer, the proposed adaptive integral binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. The effectiveness of the proposed system is conformed by the experimental results.

  • PDF